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Abstract
We examine PlanetLab resource utilization data from the per-
spective of the designer of a resource discovery system. We are
particularly interested in variability of, and correlations
among, resource utilization attributes, both among nodes and
over time. We find that, for some resources, the quantity avail-
able at a fixed time differs significantly across nodes, suggest-
ing a potential benefit to using a resource discovery system to
wisely place application instances. We further find that, for
many nodes, resource availability varies over time, suggesting
periodic migration of application instances could be useful. We
find that some attributes are moderately correlated among
nodes at the same site, but that on a single node, attributes are
generally not correlated to one another. Finally, we find that
for some node pairs, measured latency can reasonably predict
available bandwidth based on a correlation function derived
from observing latency and bandwidth across all node pairs.

1. Introduction

Shared distributed platforms such as PlanetLab[2]
have become popular for evaluating and deploying wide-
area distributed applications. At the same time, structured
peer-to-peer overlay networks have become an attractive
building block for such applications, as they provide a
scalable, self-healing, self-configuring routing substrate. 

One option for deploying a peer-to-peer application is
to create an instance of the application on every available
platform node. But because node and network links in
platforms like PlanetLab are time-shared among compet-
ing users, the amount of available node and network
resources varies unpredictably across nodes and over
time. In this environment, the application deployer wish-
ing to maximize application performance and predictabil-
ity may decide to deploy her application only on those
nodes offering desired amounts of per-node and inter-
node resources, and to periodically migrate application
instances as these underlying conditions change. Indeed,
the strategies in OpenHash[6] allow her to be selective in
choosing where to run her peer-to-peer application while
still leveraging a single shared public DHT infrastructure.
Or if she is building her application on an unstructured
peer-to-peer network, she might deploy her application
on all nodes, but choose a subset of powerful or well-
connected nodes as “super-peers.” 

The process of locating a set of nodes that meet appli-
cation requirements can be automated by a resource dis-
covery system. In this paper we study time and space
relationships among a variety of node and network
resource attributes collected from PlanetLab, focusing on

what these relationships tell us about the potential useful-
ness of employing a resource discovery system to enable
informed service placement, and about certain design
choices one might make when building such a system.

For example, if all nodes offer the same amount of
resources at all times, then any selection of nodes is as
good as any other, and intelligent node selection is unim-
portant. Even in the presence of resource heterogeneity at
fixed points in time, if the amount of available resources
on a node varies too fast and by too large a magnitude,
then the set of nodes satisfying a resource discovery
request will cease to satisfy the request very soon after a
resource discovery mapping is computed. At the other
extreme, if the amount of available resources is invariant,
then online resource discovery is unnecessary--we can
simply take a snapshot of node characteristics at one
point in time and thereafter use those measurements to
compute resource mappings offline. Between these
extremes, a system that provides an initial deployment-
time mapping and periodically suggests migrating some
application instances to new nodes, is ideal. Among the
goals of this paper is to determine whether the preva-
lence, frequency, and magnitude of resource variability
on PlanetLab falls within the range that makes informed
service placement useful.

Additionally, we note that if correlations exist among
a set of resource attributes, then the resource discovery
system can measure and store just one value from each
set, using it as a surrogate for the others in the set, and
thereby reducing resource usage by the resource discov-
ery system. This paper investigates whether such correla-
tions exist.

Thus this paper addresses the following questions that
impact the usefulness and overhead of resource discovery
and service placement:

• How much does the available amount of per-node
resources vary among nodes at a fixed time? 

• How much does the available amount of per-node
resources vary over time? How much do inter-node
latency and available bandwidth vary over time?

• On a given node, are any per-node attributes strongly
correlated? Are inter-node latency and available
bandwidth correlated?
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2. Experimental environment

We used four data sources for our analyses: Gan-
glia[7] and CoMon[9] for per-node attributes, and all-
pairs-pings (APP)[10] and Iperf[3] for inter-node
latency and available bandwidth, respectively. For the
first two we used data collected from October 10, 2004
to October 24, 2004. For the second two we used data
collected over a one-month period ending at the same
time. Although the total number of PlanetLab nodes
varied during these periods, approximately 250 nodes
were able to provide data on an average day. 

Every five minutes we polled Ganglia’s per-node
report of free memory, free swap space, free disk space,
one-minute load average, and 15-second average of
number of network bytes sent and received per second.
At the same time we polled CoMon’s report of the num-
ber of “active slices” on the node. A PlanetLab slice is
roughly equivalent to a user, and this measure tells us
how many slices used at least one-tenth of one percent
of the CPU in the last 5 minutes. Finally, APP measures
the latency between all pairs of PlanetLab nodes every
15 minutes, and Iperf measures the bandwidth available
to a bulk TCP transfer between every pair of PlanetLab
nodes once to twice a week.1

Our Ganglia data on load comes with the following
caveat. As on all other Linux systems, the one-minute
load is the average number of threads that were runna-
ble at any point in time over the last minute. But
because PlanetLab nodes use proportional-share CPU
scheduling, the load on a node does not directly dictate
the fraction of CPU time a slice receives. Instead, the
number of other slices with runnable threads (approxi-
mated by the “active slices” attribute we measured) dic-
tates the fraction of CPU time a slice will receive. Still,
some slices that were active at some point during the
past five minutes will not have been active over all win-
dows (100s of milliseconds in length) over which share
proportionality is computed, so one-minute-averaged
load information is also useful for obtaining a full pic-
ture of the CPU resources available on a node. More-
over, load always represents demand for the CPU on a
node, and is thus an interesting metric.

3. Results

In this section we describe the data analysis we per-
formed to answer the questions in Section 1, and the
conclusions we draw from that analysis.

3.1. Resource heterogeneity
Our first experiment attempts to roughly assess the

degree to which the amount of resources available var-
ies among nodes at any fixed point in time. First we
computed the mean, standard deviation, 10th percentile,
and 90th percentile of each resource quantity, across all
measurements from all nodes during the two week
interval. Note that these attributes are not normally dis-
tributed, so although standard deviation still measures
variability, it does not allow one to directly infer the
percentage of values that are within various intervals of
the mean, as can be done when the distribution is nor-
mal. Table 1 shows the results for five important
attributes that are generally static. Because the initially-
deployed set of PlanetLab nodes were identical, and
subsequently-added nodes must meet certain configura-
tion requirements, it is not surprising that some of these
attributes vary little. Table 2 presents the same analysis
for the seven dynamic attributes that we consider the
most relevant to resource discovery. We see that all
attributes vary significantly; the 90th percentile value

1 Because of the relatively smaller number of measurements in
the bandwidth dataset, we conducted the experiments involving
latency and bandwidth on an additional dataset from the preceding
month. We found similar results, so we present only the results from
one of the month’s datasets here.

attribute mean std. 
dev.

10th 
%ile

90th 
%ile

# of CPUs 1.0 0.0 1.0 1.0

cpu speed (MHz) 1942 572 1263 2652

total disk (GB) 127 88.5 35.1 232

total mem (MB) 1153 467 628 2017

total swap (GB) 1.0 0.0 1.0 1.0

Table 1: Variation across all measurements in the 
trace. Additionally, PlanetLab nodes are located in 
approximately 27 countries. 

attribute mean std. 
dev.

10th 
%ile

90th 
%ile

1 min load avg. 6.81 20.06 1.05 11.86

free mem (MB) 62.359 125.234 13.668 105.432

free swap (MB) 755.596 178.795 524.336 1000.268

free disk (GB) 102.8 86.04 8.088 208.3

active slices 13.3 5.96 0.0 20.0

bytes/s in 50477 117023 5568 92877

bytes/s out 52543 130112 5476 96214

Table 2: Variation across all measurements in the 
trace, for dynamic attributes. 
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of an attribute is often more than 10x the 10th percen-
tile value. To rule out the possibility that this variation
is due to our incorporating all measurements from the
two-weeks period, rather than because of high vari-
ability across nodes at a single point in time (i.e., to
rule out a scenario in which all nodes exhibit the same
values for each attribute at any point in time, but those
values vary in concert over time), we compute the
coefficient of variance (CV) across all nodes for each
of the attributes at each time interval. CV, defined as
standard deviation divided by mean, is a normalized
measure of the variability of a quantity (in this case,
the variability across nodes for a particular attribute at
one point in time). This data appears in Figure 1.

We see that free swap space, number of active
slices, and free disk space vary the least across nodes
and that the degree of this variation changes little over
time. On the other hand, load, free memory, bytes in,
and bytes out vary the most across nodes and the
degree of this variation itself varies substantially over
time. In general, because all attributes exhibit nontriv-
ial CVs at almost all time intervals, we conclude that
the quantity of available per-node resources varies
sufficiently across nodes at any point in time to justify
using resource discovery to choose wisely the nodes
on which an application is deployed.

3.2. Variability of per-node attributes over time

Our next question relates to the variability of
resources on a single node over time. Recall that very
low variability suggests offline node selection is suffi-
cient, moderate variability suggests that online
resource discovery with periodic task migration is
useful, and very high variability suggests that resource
discovery is unlikely to be useful. To assess resource
variability, we compute, for each node and attribute,

over some time interval, the average of the magni-
tudes (absolute value) of the percentage differences in
the “bad” direction for that attribute between its value
at each observation in the interval and its value at the
first observation in the interval. For example, if the
interval is 20 minutes and a node's loads are 10, 3, 15,
20, then we compute the average of 0%, 0% (load
went down), 50%, and 100%. This tells us that if an
application were deployed on that node and left there
for 20 minutes, it would experience an average 38%
“bad” load deviation from the deployment-time load
value. We perform this process using intervals of 30
minutes, 1 hour, 4 hours, and 12 hours, corresponding
to leaving the application running on the node, with-
out migration, for 30 minutes, 1 hour, 4 hours, and 12
hours. We average across all intervals of the given
length starting at each observation time in the trace.
From this we compute the CDF of the percentage of
nodes with each possible average magnitude of per-
centage difference over the interval. The results for
each interval length are graphed in Figure 2-4. The
graph for 12-hour interval length is nearly identical to
that for 4-hour length, so it is not presented here.

We make three observations about these graphs.
First, the degree of variability of each attribute can be
roughly ranked identically for each interval size: free
disk space and free swap space vary little; network
bytes sent and received vary significantly; free mem-
ory and load average vary moderately; and active
slices varies moderately to significantly. We empha-
size that this data presents only part of the picture: the
impact of resource variability on an application
depends on application sensitivity to that resource.
For example, the impact on an application of a 10%
change in the load on a node may be larger or smaller
than the impact of a 10% change in the amount of free

Figure 1: Coefficient of variation over time. 
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Figure 2: Attribute variability over time for 30-
minute windows. 
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memory on that node. Nonetheless, our preliminary
investigation shows that memory, load, and competi-
tion for endpoint network resources can change signif-
icantly in the “bad” direction over longer time peri-
ods, suggesting that migration could be of value
applications that are sensitive to those resources.

Second, we note that the CDF curve shifts to the
right as the interval length increases, suggesting that
attributes vary less over short time periods than they
do over longer periods. Choosing an appropriate
migration interval requires finding the “sweet spot” in
the curve of variability versus interval length. We
have presented only three points on this curve, but we
observe that reducing the interval length below 1 hour
does not significantly reduce observed variation,
implying that a 1-hour migration interval would cap-
ture about as much benefit as a shorter migration
interval. Unfortunately even with a 30-minute migra-
tion interval, several attributes vary significantly dur-
ing the interval. Nonetheless,this variation is not
nearly as severe as over a 4-hour (or 12-hour) interval.

Third, we observe that the slope of the CDF varies
among attributes. A high-slope CDF suggests that all
nodes have similar values of that amount of deviation
from the initial value, while a low-slope CDF suggests
that nodes exhibit a wide range of average deviations.
We found that the slope tended to decrease as the
median variability increased. This suggests that it
might be possible to classify nodes as “high variability
over time” or “low variability over time” nodes with
respect to the high-median-variability attributes free
memory, load, and network traffic, in turn allowing a
user to avoid high-variability nodes if their application
is sensitive to high variability in those attributes.

3.3. Variability of inter-node attributes over time
Next we computed similar CDFs for the inter-node

attributes latency and available bandwidth but using
the entire month of inter-node data as the window.
Figure 5 shows the CDF of the percentage of node
pairs with each average magnitude of percentage dif-
ference from the initial value, averaged over all start-
ing points in the trace (all node-pair latency measure-
ments were taken once every 15 minutes, and all
node-pair bandwidth measurements were taken 1-2
times per week). We observe that latency and band-
width exhibit about the same amount of variability
over a month-long window as do per-node attributes
over much shorter windows. This suggests that migra-
tion based on inter-node network characteristics may
be less useful than that based on per-node resource
quantities.

3.4. Correlation among per-node attributes
Our next set of analyses investigate the feasibility

of reducing the overhead of a resource discovery ser-
vice by using some attributes as surrogates for other
attributes, and then only measuring and storing those

Figure 3: Attribute variability over time for 1-hour
windows. 
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Figure 4: Attribute variability over time for 4-hour
windows. .
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Figure 5: Inter-node latency and bandwidth varia-
tion over time. 
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attributes that are serving as surrogates. We compute
the correlation coefficient (r) of every pair of per-node
attributes, treating each node’s collection of measure-
ments at each timestep as separate observations.
Table 3 shows the correlation coefficients for the
seven attributes we have been studying. Additionally,
along the diagonal we record the overall correlation
between the value of that attribute on the first node at
each site and that of the same attribute on the second
node at the same site (at least two nodes are typically
installed at each PlanetLab site). Recall that a correla-
tion coefficient of 1.0 means two attributes are per-
fectly correlated, a correlation coefficient of -1.0
means two attributes are perfectly inversely corre-
lated, and a correlation coefficient of 0.0 means two
attributes are completely uncorrelated. For reference,
the correlation coefficient between load averaged over
the last one-minute interval and load averaged over
the last five-minute interval is 0.966, and the correla-
tion coefficient between the time a system was last
rebooted and the one-minute load average is 0.01.

We see that no pairs of different attributes are very
strongly correlated (though bytes_in and bytes_out are
somewhat correlated). From this we conclude that no
pair of attributes are suitable to serve as surrogates for
one another. One possible explanation for this result is
that applications generally don’t consume resources in
equal proportions--for example, some applications are
CPU-bound, consuming significant CPU but not nec-
essarily much else--so the mix of application types on

a node determines how much of each resource is used.
Breaking the trace down into one-hour segments
revealed some intervals with somewhat higher-than-
average correlations, particularly amongst load, free
swap, and active slices (r magnitudes greater than 0.4
for about 30 one-hour periods of the trace). 

Looking between pairs of hosts at the same site
instead of between pairs of attributes on a single node,
the values along the diagonal reveal that for several
attributes there is a correlation between the value of
that attribute on the first node at a site and the value of
that attribute on the second node at the same site. This
suggests that depending on the user’s tolerance for
approximate answers, a resource discovery system
could use one node at a site as a surrogate for the oth-
ers at that site with respect to free disk space, number
of active slices, or free memory.

3.5. Correlation among inter-node attributes
One pair of potentially correlated attributes that

merit special attention is latency and bandwidth. In
general, for a given loss rate, one expects bandwidth
to vary roughly with 1/latency[8]. If we empirically
find a strong correlation between latency and band-
width, we might use latency as a surrogate for band-
width, saving substantial measurement overhead. 

For this experiment we annotated each pairwise
bandwidth measurement collected by Iperf with the
most recently measured latency between that pair of
nodes as recorded by APP1. We graph these
<latency,bandwidth> tuples in Figure 6 along with the
power-law regression line derived from them. We find
a correlation coefficient of -0.59, suggesting a moder-
ate inverse power correlation. Viewed another way,
using the regression equation derived from this empir-
ical data leads to an average 233% error when
attempting to estimate bandwidth using only mea-
sured latency. We conclude that latency is a suitable
surrogate for bandwidth when a rough estimate of
bandwidth is needed. One possible explanation for the
imperfection of this correlation is that some PlanetLab
nodes are artificially rate-limited (bandwidth-capped)
due to cost concerns, thus artificially lowering avail-
able bandwidth below what would be predicted based
on observed latency. Indeed, one can see a dense rect-
angular region at the bottom of Figure 6 below a hori-
zontal line at about 1600 kb/s, where decreased
latency does not correlate to increased bandwidth.

r load
one

mem
free

swap
free

disk
free

actv
slice

byte
in

byte
out

load
one .080

mem
free -.050 .627

swap
free -.231 .274 .473

disk
free -.035 .192 .212 .929

actv
slice .079 -.050 -.219 .049 .773

byte
in .059 -.033 -.074 .059 .140 .209

byte
out .058 -.033 -.059 .078 .137 .443 .188

Table 3: Correlation between pairs of attributes on 
the same node, except elements on the diagonal, 
which represent correlation between two nodes at 
the same site with respect to that attribute. , 

1 APP probes every 15 minutes, so this approach allows for up
to 7.5 minutes between a bandwidth measurement and the closest
latency measurement.



6

Such nodes are one possible explanation for the pres-
ence of this region.

We did find, however, that certain node pairs
showed strong latency-bandwidth correlation. For
example, using the regression equation obtained from
the entire dataset, 17% of node pairs had bandwidths
within 25% of what would be predicted given their
latencies, and 56% of node pairs had bandwidths
within 50% of what would be predicted. This suggests
that although the latency-bandwidth correlation across
the system as a whole is only moderate, we can use
latency to estimate bandwidth reasonably effectively
for a substantial fraction of node pairs. Once such
node pairs are identified, a resource discovery system
could reduce measurement overhead by inferring
available bandwidth between these node pairs from
measured latency between these node pairs, rather
than measuring bandwidth directily.

4. Conclusion and related work

Performance and predictability requirements may
dictate that a distributed application run only on nodes
with sufficient resources. In examining resource avail-
ability statistics collected over two weeks from Plan-
etLab, we find that available resources vary signifi-
cantly among nodes, suggesting that wise placement
of application instances can be beneficial. Further, we
find that node and network resources vary over time at
a rate that suggests that periodic migration of applica-
tion instances in response to changes in node resource
availability may be warranted. We find that for some
attributes there is a strong correlation among nodes at
the same site, but on a single node, different attributes
are not strongly correlated to one another. Finally, we

for some node pairs, measured latency can reasonably
predict available bandwidth based on a correlation
function derived from observing latency and band-
width across all node pairs

This work adds to a growing literature on measure-
ments of resource utilization in Internet-scale systems,
a subset of which we mention here. [1] studies
throughput stability to many hosts from the vantage
point of the 1996 Olympic Games web server, while
[13] collects data from 31 pairs of hosts. [4] describes
how to monitor a subset of paths to estimate loss rate
and latency on all other paths in a network. [11] and
[12] focus on predicting bandwidth and CPU utiliza-
tion in Grid systems. Finally, [5] also studies Planet-
Lab nodes, but it focuses on failures and user work-
loads rather than on the implications of resource
attribute heterogeneity, variability, and correlation for
resource discovery; and it does not include data on
network latency and available bandwidth. 
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Figure 6: Latency-bandwidth correlation. 
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