
Globus and PlanetLab Resource Management
Solutions Compared

Matei Ripeanu
University of Chicago

Mic Bowman
Intel Corporation

Jeffrey S. Chase
Duke University

Ian Foster
University of Chicago / Argonne National Laboratory

Milan Milenkovic
Intel Corporation

PDN–04–018

February 2004

Appears in: Proceedings of the Thirteenth IEEE International Sympo-
sium on High-Performance Distributed Computing (HPDC-13), Honolulu,
Hawaii, June 2004.

Globus and PlanetLab Resource Management Solutions Compared

Matei Ripeanu
The University of Chicago
matei@cs.uchicago.edu

Mic Bowman
Intel Research

mic.bowman@intel.com

Jeffrey S. Chase
Duke University

chase@cs.duke.edu

Ian Foster
The University of Chicago & Argonne National Lab.

foster@cs.uchicago.edu

Milan Milenkovic

Intel Research
milan.milenkovic@intel.com

Abstract

PlanetLab and Globus Toolkit are gaining
widespread adoption in their respective communities.
Although designed to solve different problems–
PlanetLab is deploying a worldwide infrastructure
testbed for experimenting with network services, while
Globus is offering general, standards-based, software
for running distributed applications over aggregated,
shared resources—both build infrastructures that
enable federated, extensible, and secure resource
sharing across trust domains. Thus, it is instructive to
compare their resource management solutions. To this
end, we review the approaches taken in the two
systems, attempt to trace back to starting assumptions
the differences in these approaches, and explore
scenarios where the two platforms can cooperate to the
benefit of both user communities. We believe that this
is a key first step to identifying pieces that could be
shared by the two communities, pieces that are
complementary, and how Globus and PlanetLab might
ultimately evolve together.

1. Introduction

The PlanetLab project is deploying and managing a

worldwide infrastructure testbed for experimenting
with a new class of network services. The Globus
Alliance is developing a general, standards-based,
software toolkit for running distributed applications
over aggregated, shared resources. The two systems
have many similarities in their user communities,
goals, approaches, and technologies, but also important
differences.

In this paper, we take a first step towards
elucidating these commonalities and differences by
undertaking a comparison of the approaches to
resource management in the two systems. Although
resource management is neither the complete nor final
goal of either project, from a resource management

perspective both PlanetLab and Globus attack similar
problems: both need to discover, monitor, and allocate
resources to applications/services in a coordinated,
secure, and resilient fashion. It is therefore natural to
compare the two systems to understand differences in
the underlying goals, premises, and assumptions, and
how these technical differences shape the two evolving
architectures. Indeed, we believe that this
understanding is key to identifying which pieces could
transfer across domains (e.g., which wheels might one
community reinvent, or avoid reinventing), which
pieces are complementary, and how Globus and
PlanetLab might ultimately evolve together.

Before proceeding with this comparison, we note
three caveats. First, both Globus and PlanetLab are
active research projects. Thus, we attempt to compare
both their existing and their planned functionality and
features. Moreover, aspects of this comparison are
likely to become obsolete as the two projects evolve.

Second, while we focus here on comparing and
contrasting resource management abstractions and
mechanisms, the two projects are to a large degree
complementary: Globus and Open Grid Services
Architecture (OGSA) define protocols, interfaces, and
behaviors for distributed resource management (e.g.,
WS-Agreement [5]) from which distributed systems
can be constructed. PlanetLab developers, on the other
hand, focus to a larger degree on implementing
interfaces/behaviors to manage local systems with
global behaviors left to the services built above this
common base.

Table 1: Abbreviations used.
GT Globus Toolkit [1]
GT3 Globus Toolkit version 3 [1]
VO Virtual Organization
WSRF Web Services Resource Framework
OGSA Open Grid Services Architecture [3]
GSI Grid Security Infrastructure [4]
VM Virtual Machine

Third, key differences ultimately influence the two
solutions: Globus is a software toolkit that is based on
standards and has deployments. PlanetLab is a
deployment that has a software system and may
ultimately influence or produce standards. For
example, GT3 has multiple deployments while
PlanetLab, at least in its current instantiation, is
building the equivalent of a single deployment. The
PlanetLab Consortium produces the PlanetLab
software and manages its single deployment on a rather
homogeneous hardware/software base. In contrast, the
multiple deployment assumption requires Globus
developers to work with fewer assumptions on
participating resources, on existing infrastructure
deployments (e.g., security infrastructure), or on the
performance parameters of these deployments should
achieve.

The approach to standardization, perhaps a side
effect of different maturity stages, has a similarly
strong influence: the Globus project works closely with
Global Grid Forum [6], OASIS, IETF, and W3C to
define standards and gain community acceptance.
PlanetLab infrastructure solutions are based on “rough
consensus and working code” and focus on efficient
testbed operations; they might ultimately influence or
produce standards but PlanetLab considers the
infrastructure to be an open research topic that would
be hindered by early standardization.

With these caveats in mind, we now proceed to our
comparison. We briefly describe Globus and PlanetLab
(Section 2), contrast their starting assumptions (Section
3), decompose solutions into basic mechanisms that we
compare, try to highlight what appears to be a valuable
technique for a particular sub-domain (Section 4), and
present a scenario where Globus and PlanetLab can
work together to provide services that are more
valuable than either in isolation (Section 5).

2. Background

We first provide some background information on

the Globus and PlanetLab systems.

2.1. Gr ids and the Globus Toolkit

Grids aim to enable “resource sharing and

coordinated problem solving in dynamic, multi-
institutional virtual organizations” [7]. In other words,
grids provide an infrastructure for federated resource
sharing across trust domains. Grids evolved from the
idea of metacomputing [1, 8]: building a uniform
computing environment from diverse resources by
defining standard network protocols and/or interposing
a uniform API at the library level. Much like the
Internet on which they build, current grids define
protocols and middleware that can mediate access to a

wide range of resources without requiring
modifications to operating systems. Applications use
services provided by this layer to discover, aggregate,
and harness resources.

The recently proposed WS-Resource Framework
(WSRF) and its implementation in the Globus
Toolkit v4, among others, define uniform mechanisms
for managing remote state, creating a standard
substrate for building virtual organizations (VOs) and
developing new services and applications that exploit
the resources shared within these VOs.

WSRF and related Web Services and OGSA
standards [3] are crucial to the Grid vision; they are
the standards that make it possible to develop large-
scale, reliable, and interoperable grid applications and
services. However, these standards are largely
independent of the underlying resource management
mechanisms used. Thus the rest of this document will
discuss them only superficially as we focus on
mechanisms rather than standards or protocols.

Globus Toolkit [1] is a collection of technologies (in
their most recent instantiation, Web services-based and
WSRF-compliant) that provides basic middleware to
create VOs, addressing such issues as security,
resource discovery, resource management, and data
movement. At deployment, depending on available
resources and planned applications, specific service
implementations can be chosen and deployed, often in
conjunction with other GT-based components. GT is in
production use across VOs integrating resources from
20-50 sites [9-13] with thousands of computational
and data resources, and is expected to scale to 100s of
sites with 1000s of sites as a future goal.

2.2. PlanetLab

PlanetLab [14, 15] is a large-scale, distributed

platform for new network services such as content
distribution networks [16-18], robust routing overlays
[19], network measurement services [20-22], scalable
object location [23-26], network embedded storage
[27], and application-level multicast [28, 29].
PlanetLab was envisioned as a global testbed for
developing and deploying next-generation Internet
services and offering them to others for experimental
use and eventually perhaps for production use. The
current PlanetLab user community consists primarily
of researchers in networking and distributed systems,
although PlanetLab may host services with user
communities who are unaware of its existence. The
testbed is best suited to services that need multiple,
possibly geographically dispersed “points of presence.”

PlanetLab is designed to run on dedicated hosts. It
provides purpose-built software from the ground-up,
including an operating system (currently modified
Linux) with extensions for virtualization. PlanetLab

uses virtualization containers to manage resource
allocation and to achieve isolation between a
potentially large number of long-lived, independent
services.

PlanetLab provides its users with a virtual container
at each host to act as a “point of presence” for a
service. From a service programmer’s perspective,
PlanetLab provides a distributed virtual machine with a
relatively low-level system abstraction, in the form of
(a distributed set of) virtual containers and a familiar
Unix-style API. It is envisaged that high-value
services, such as storage or naming, will be built by the
user community, and that successful ones will
eventually be incorporated into the common core.

PlanetLab currently includes more than 370 hosts at
over 155 sites and is planned to grow to about 1000
sites with a few nodes each plus a small number of
sites with more substantial computing resources (e.g.,
clusters). A significant part of PlanetLab infrastructure
is dedicated to managing resources both at the node
level and in the aggregate.

3. Different star ting assumptions …

While the Globus and PlanetLab efforts tackle

similar resource management problems they make
further assumptions regarding resources and
application requirements that sometimes lead to
different solutions. Their starting assumptions differ in
a number of key areas: the user communities they
serve, the characteristics of the most frequent
applications and resources, and the degree of control
individual sites retain over resources made available to
a VO.

3.1. User communities

PlanetLab and Globus serve distinct, although

overlapping, user communities. The PlanetLab user
community comprises primarily computer science
researchers interested in experimenting with
infrastructure for building “planetary scale” services.
The Globus user community is a heterogeneous pool of
end-users (in science and industry), including computer
scientists, interested in efficiently running their end-
user applications. This distinction results in different
functionality, as noted in the following.
��PlanetLab itself provides only minimal

functionality, leaving services unconstrained in the
way they provide richer functionality to
applications. One downside, at least in the short
term, may be duplicated user effort when the same
functionality is implemented in multiple services.
The potential upside is having multiple
implementations of similar functionality emerging

as competing services that are selected by
application writers based on merit.

��Globus, on the other hand, aims to provide richer,
standardized functionality closer to current
application requirements – although there does also
exist a rich ecology of higher-level tools and
services that build on Globus mechanisms to address
specific application requirements.

One example is the security infrastructure:
PlanetLab provides limited security functionality and
services build their own security layer if needed (e.g.,
the SHARP [2] resource trading framework develops
its own trust delegation and authentication mechanisms
in the PlanetLab context). In contrast, Globus Toolkit’s
Grid Security Infrastructure (GSI [4]) framework
includes a complete machinery with protocols, APIs,
and tools based on WS-Security mechanisms.

3.2. Application character istics.

The applications and services targeted by the two

communities have different characteristics that
generally result in different resource requirements.
��Grid applications are often compute-intensive [10-

12], although some also consume significant
amounts of disk and/or network bandwidth as a
result of focusing on, for example, integration of
large-scale data repositories (data grids [30-33],
virtual observatory [34]), collaboration [35], or the
control of scientific instruments [36, 37].

��PlanetLab services are generally network-intensive
and rarely have significant CPU demands.
Experimental services include network measurement
[20-22], application-level multicast [28, 29], DHTs
[23-26], storage [27, 38-40], resource allocation [2],
distributed query processing [41-43], content
distribution networks [16-18], monitoring [44], and
overlay networks [19, 45].

On another axis, the two communities take different
approaches to geographical resource distribution and to
resource partitioning among services/applications.
Roughly the difference can be summarized as follows:
for PlanetLab services, embracing resource distribution
is an objective, while for grid applications, resource
distribution is a necessary evil.

For some classes of PlanetLab services (e.g.,
network monitoring services) wide geographical
distribution is essential. For grids, geographic resource
distribution is typically a consequence of VO
membership and rarely an application requirement.
(There are exceptions, e.g., content distribution or
collaboration applications.)

Given a choice, few current grid applications will
prefer to operate over a large set of resources with
limited capabilities. In contrast, most network services

envisioned for PlanetLab try to exploit the wide-area
distribution (e.g., multiple network vantage points) and
the (presumably) uncoordinated failures offered by a
large set of resources, even if these resources come
with limited individual capabilities.

3.3. Resources

PlanetLab’s mission as a testbed and deployment

platform for a new class of network services allows for
little resource heterogeneity in the underlying
infrastructure: no legacy hardware or software has to
be supported. PlanetLab, assumes (and exploits) this
lack of heterogeneity. For example, the security
infrastructure is based on SSH, which excludes sites
that require a different security model (say Kerberos)
or certificate standard (e.g., X.509, PGP, SPKI).

Currently, PlanetLab supports Intel-based desktop
and server configurations and one operating system
(Linux).

Globus can operate on a wide range of devices:
clusters, workstations, PDAs, file systems, databases,
sensors, and scientific instruments can all be integrated
into a VO. All major operating systems are supported
in GT2 and the Java-based implementation of OGSA
standards in GT3 and GT4 further expands the set of
environments where Globus can be deployed.

3.4. Resource ownership

Both Globus and PlanetLab aim to allow

participating sites to retain control over local resources,
e.g., by allocating local resources with site-specific
priorities, by black- or white-listing users at the site
level, or by specifying and enforcing site-specific
usage policies.

In the tradeoffs space (Figure 1) between autonomy
offered to individual sites and the functionality that can
be built at the federation level, Globus and PlanetLab
make distinct decisions, as follows:

PlanetLab limits the control individual sites have

over their own resources in a number of ways: by
mandating the operating system and key components
of the security infrastructure, by allowing PlanetLab
administrators ‘ root’ access on individual nodes, and
by giving PlanetLab administrators access to a remote
power button for each site. These decisions enable a
faster evolution of the testbed, as a more compact set
of software can evolve more quickly and software
updates can be easily distributed and deployed by
central administrators.

In contrast, when using Globus, individual sites that
bring resources to a VO typically relinquish much less
control to external organizations—they might permit
application communities to use tools such as Pacman
to automate the deployment of application software to
grid resources, but privileged services are firmly under
the control of local site administrators.

In this respect, one can say that PlanetLab
emphasizes global coordination over local autonomy to
a greater degree than Globus; PlanetLab sites
relinquish more control to external administrators.

4. … lead to different solutions

Both PlanetLab and Globus are built using

orthogonal sets of mechanisms that can be naturally
grouped into two categories: mechanisms for managing
resources at the individual node (or site) level and
mechanisms that enable federated sharing of resources
(i.e, for building virtual organizations). We compare
Globus and PlanetLab solutions in each category.

4.1. Local resource management abstractions

The two platforms have different foci. GT focuses

on integrating, to the extent possible, existing resources
with their hardware, operating systems, and local
resource management and security infrastructure. GT
provides, in effect, a set of unifying interfaces through
which local resource management functionality can be
discovered and used. (Some GT communities require
standardization in hardware and define standard
software suites that may include local resource
management functions, as in NEESgrid [46] and
BIRN [47]. However, it is rare that there is not some
amount of heterogeneity to manage.)

Assume, for example, an application that runs one
hour starting at midnight every day for a week on the
same node. The manager or user of such an application
must discover a node that supports reservations, query
for available timeslots, make a reservation, claim the
reservation each day, and bind it to the application,
with all of these functions accessed via standard
protocols that map to node-specific functionality.

PlanetLab, in contrast, specifies the individual node
architecture and functionality from the hardware level

Individual site autonomy

Fu
nc

tio
na

lit
y

at
 V

O
 le

ve
l

Figure 1: PlanetLab and Globus make different
decisions when balancing between individual site
autonomy and functionality offered at the VO level.

PlanetLab

Globus

up. The result is a platform where all participating
nodes/sites provide uniform individual resource
management functionality [48]. As a result, PlanetLab
does not need to build the ‘glue’ level that GT provides
to enable uniform access to, and management of, a
heterogeneous set of resources.

The main abstraction offered by a PlanetLab node is
a virtual machine (VM): each user of a PlanetLab node
is presented with the image of a raw, dedicated
machine. Currently the interface is the familiar Unix
API, but in the future it will likely be a true virtual
machine with improved isolation and better user
control over the operating system and local resources.
The emphasis here is on simplicity and generality on
the assumption of a homogeneous hardware/software
base: Intel-based servers running software whose
bottom layer is dictated by PlanetLab.

In contrast, Globus evolved from metacomputing
[8], the idea of building a uniform computing
environment from diverse resources by interposing a
uniform API at the library level and standard protocols
at the network layer [49]. Thus Globus can embrace-
and-extend the full range of deployed systems,
including legacy OS and security architectures. The
corresponding abstractions offered by the Globus
Toolkit are the service (for GT3) or job (for GT2 and
GT3). GT3 service interfaces are being defined not
only for management of ‘ jobs’ but also for managing
computational resources, via for example the creation
and initialization of a new virtual machine [50].

All local authorization and resource allocation
decisions revolve around these abstractions: Is the user
allowed to create a VM or invoke an operation on a
grid service (run a job) on this node? Is a VM or grid
service allowed to access certain resources? How are
resource allocations specified and then bound to a VM
or to a service/job? These questions are active research
topics within the Globus and PlanetLab communities.

4.2. Global federation-building mechanisms

Delegation [51] is a key mechanism for enabling

federated sharing of resources. In the rest of this
section we compare the delegation approaches used in
Globus and PlanetLab and show how they are
exploited in the two systems to build global resource
allocation/scheduling services.

4.2.1. Delegation mechanisms are essential to
building federations. Resource management
functionality at the VO level is generally based on
(1) resource usage delegation: the ability of a node/site
to delegate the right to consume its resources and/or
(2) identity delegation: principals’ ability to delegate
their identity to other principals to act on their behalf.

Resource usage delegation

Both PlanetLab and Globus projects are developing
mechanisms and protocols to enable a node or a
site-wide resource manager to delegate resource
consumption rights to an application or to a broker.

PlanetLab builds on resource capabilities [48] to
offer the basic mechanism for resource usage
delegation. PlanetLab resource capabilities represent
time-limited claims over low-level resources available
at a node or site: fair-share or dedicated use for CPU,
network, memory, disk, network ports, file descriptors,
etc. A local resource manager keeps track of resources
available at a node and hands over capabilities to
brokers that operate at the VO level.

A PlanetLab capability is represented by a 160-bit
opaque identifier. Services that use and transfer these
capabilities might add a more detailed description of
the underlying resource together with authentication,
authorization, or trust building mechanisms.
(PlanetLab however does not standardize at this level.)
SILK [52], a Linux kernel module, is the OS-level
mechanism that supports and enforces capabilities.

At a higher-level, the corresponding solution under
development in the grid community is the
WS-Agreement protocol [5]. The goal of
WS-Agreement is to define a uniform representation of
agreements between resource/service providers and
consumers and to formalize the negotiation process
used to establish and modify agreements [53]. Note
that a capability is in fact an implied agreement: the
issuer of the capability agrees to provide some
specified resources during a specified time interval to
the capability holder.

WS-Agreement specifies a standard representation
for agreements as Web Services, a (re)negotiation
protocol, agreement states and their lifetimes, a
standard way to describe agreement monitoring
services, etc. The enforcement mechanism on the
provider side is not specified: it can be a PlanetLab
capability, a queuing system supporting reservations on
a cluster, or any ad-hoc solution.

Note that these two efforts are complementary:
PlanetLab focuses on implementing capabilities for
various resource types and on integrating the
fine-grained resource control they offer with VM
functionality; WS-Agreement focuses on uniform
agreement representation, naming and lifecycle.

Both PlanetLab and Globus intend to use
capabilities or agreements to enable resource
delegation. In PlanetLab a resource owner (the node
manager) delegates the right to use a local resource by
handing the corresponding capability to a user or
service. Users/services acquire required capabilities
directly from node managers or from specialized
brokers that trade capabilities and then bind these

capabilities to a VM. The scenario imagined for WS-
Agreement is similar: users negotiate agreements with
resource owners and may later bind these agreements
to submitted jobs or other running services.

Identity delegation

In many resource federation scenarios, a principal
needs to perform certain actions on behalf of another
principal. For example: user X calls service S1 and S1
needs to call S2 on behalf of X. If accounting or
authorization decisions made at S2 depend on the
original caller identity (X), then S1 needs to provide S2
an unforgeable, unrepudiable claim that the call is
made on behalf of X. Most Globus-compatible
schedulers are built using identity delegation: the
scheduler receives jobs descriptions from users and
submits them to individual sites on behalf of these
users. This focus on identity delegation is motivated in
part by the frequent requirement to be able to associate
resource usage with specific individuals rather than
communities or services. (The related Community
Authorization Service [54] implements a capability-
based service). We briefly summarize below the
existing functionality.

The Grid Security Infrastructure (GSI) [4, 55, 56]
uses time-limited proxy certificates [57], stored with
unencrypted private keys, to address the identity
delegation issue. These certificates are correctly
formatted X.509 certificates [58], except that they are
marked as proxy certificates and are signed by the user
that delegates its identity rather than a Certificate
Authority. Choosing the lifetime of proxy certificates
requires a compromise between allowing long-term
jobs to continue to run as authenticated entities and the
need to limit the damage in the event a proxy is
compromised. Proxy certificates with restricted rights
are another way of limiting the potential damage
caused by a stolen proxy. Authorization software run
by relying parties recognizes proxy certificates and
searches the certificate chain until the user certificate is
found in order to do the authorization based on that
identity token.

PlanetLab currently does not provide a mechanism
for identity delegation. However, services can
implement their own mechanisms.

4.2.2. Global resource allocation / scheduling.
Strictly speaking, schedulers and resource allocation
brokers are not part of either Globus or PlanetLab.
However, it is relevant to compare existing and
planned implementations for the two platforms.
Together with resource management mechanisms at
the individual node level, the ability to delegate is key
to coordinated resource management at the VO level.

Generally schedulers built for PlanetLab employ
resource usage delegation while those built for Globus

exploit identity delegation. PlanetLab node managers
and brokers push capabilities (resource reservations)
from resources to the users that originate requests.
��Existing functionality is, in practice, primitive: most

resources allocations are ‘best-effort’ and resources
that cannot be shared (e.g., network ports) are
allocated on a first-come-first-served basis.

��Planned functionality: multiple brokers/schedulers,
presumably using different incentive models,
implementing different allocation policies, or having
application specific knowledge, will operate
independently and dynamically share PlanetLab
resources. This arrangement is enabled by the ability
of each site/node to delegate resource usage rights to
multiple brokers at fine granularity.
This vision is quickly materializing: SHARP ([2],
presented in more detail in Figure 2) is an example
of a resource allocation framework currently
developed for PlanetLab. With SHARP, sites can
trade resources with dynamically discovered partners
or contribute resources to federations according to
local policies. Multiple resource management
systems may coexisteither above or alongside
SHARPoperating in independent PlanetLab slices.
Application services such as batch schedulers may
also exist within slices, scheduling the resources
under their control according to local policies [59].

In Globus the flow is reversed: brokers pass job
requests from users or applications to resources –

Figure 2: SHARP, a PlanetLab resource
management example. A broker (agent) acquires
tickets representing resources from sites A and B
(steps 1 and 2). An application acquires these tickets
from the broker (3, 4) and tries to redeem the tickets at
their issuers for hard resource reservations (or leases)
(5, 6). Once the application has obtained the leases it
can create a VM, bind the resources represented by
the leases to the VM (7), and start a service. Note that
this mechanism allows individual sites/nodes to split
their resources and distribute them to multiple brokers
that operate independently. (Source: [2])

Site A Site B

AGENT

request
1b grant

ticket
2b request

1a

grant
ticket

2a

Service
Manager

request
3

grant
ticket

4

ticket
redeem

5

grant
lease

6

instantiate
service in virtual

machine
7

Tickets:
 Site A � Agent
 Site B � Agent

Lease:
 Site A � Service Manager

ideally based on knowledge of both resource
availability and allocation policies. Most such brokers
use identity delegation: a user sends a job description
to the broker, which either submits the job or forwards
it to another broker, all using the delegated identity of
the user that originated the job. In some environments,
the broker may forward the job under its own identity
or under the identity of the VO with which the user is
associated.
��Existing functionality: Numerous VO-level

schedulers (or ‘meta-schedulers’), some domain- or
application-specific, have been developed by various
groups (e.g., Nimrod-G [60], GrADS [61], DAGman
and Condor-G [62], ASCI DRM [11], [63], EU
DataGrid [31]). In addition, GT includes a co-
allocation broker, DUROC [64].

��Planned functionality: as one example of efforts
within the community, Platform Computing is
developing the Community Scheduler Framework
[65] based on the WS-Agreement specification.

5. PlanetLab and Globus together

The preceding discussion has focused on comparing

and contrasting PlanetLab and Globus resource
management solutions. However, we view the two
efforts as compatible and complementary rather than
competing. PlanetLab can be considered as an instance
of a larger Grid agenda that attempts to simplify
deployment for a narrower range of platforms and
applications. It is focusing on developing capabilities
(e.g., wide-area monitoring and instrumentation) that
extend a piece of the Grid agenda, without necessarily
excluding other pieces. As a platform, PlanetLab
enables the layering of Globus—or of any alternative
environment for interoperable heterogeneous
computing—above the primitive support it provides. In
other words, PlanetLab is just one of many platforms
that can host Globus, and Globus is just one distributed
systems environment that can run over PlanetLab.
Indeed, we have installed Globus on the PlanetLab
testbed and built the machinery to enable user access to
this deployment as a service [50].

We present here one scenario in which Globus and
PlanetLab complement each other to provide benefits
that neither would be able to provide alone. Data grids
[66] address a problem occurring in an increasing
number of fields in which large data collections are
important community resources. These data collections
can be large (1012 to 1015 bytes) and are almost always
geographically distributed, as are the computing and
storage resources that scientific communities rely upon
to store and analyze them.

Globus is being used to build VOs around these
shared data collections and to implement services for
distributed data management, access, and analysis. In

addition to security mechanisms or the ability to define
access policies at the VO level (supported by the
Community Authorization Service [54]) GT includes
tools aimed at high-performance data transfers (e.g.,
GridFTP a reliable file transfer service [66-68]). These
tools are integrated with Globus security and
authorization infrastructure and can split data transfers
over multiple TCP streams to increase transfer
throughput when data is striped across multiple nodes
at both ends. We can imagine experimental PlanetLab
services such as mTCP [69] and BANANAS [70]
being used to optimize such transfers, by monitoring
the Internet and using multipath routing to improve
transfer throughput between two endpoints.

We believe that layering Globus on top of
PlanetLab can significantly strengthen the data grid
infrastructure. This architecture will benefit from the
large PlanetLab deployed base and its ability to
monitor the Internet to offer low-level networked
services with improved performance and reliability, as
in the case of the multi-path TCP data transfer service
discussed above. Building on this set of lower level
services, Globus can add a mature, widely adopted
security infrastructure and higher-level services that
are well integrated with user applications.

More generally, data grids face the need to develop
and deploy distributed services of various sorts, such as
resource discovery (e.g., Giggle [71]), data distribution
(e.g., Kangaroo [72, 73], Stork [74]), and the data
movement services mentioned above. PlanetLab can
contribute here in two ways: as a community, it can be
a source of ideas and expertise; as a deployment, it can
potentially be a place to deploy these services “ in the
network” rather than at the edges of the network as is
currently being done within projects such as Grid3 [75]
or EU DataGrid [31].

On the other hand, PlanetLab could benefit from
Globus experience in promoting service
interoperability through uniform handling of identities
and authentication, and of service discovery,
representation, and invocation.

6. Summary and recommendations

We have reviewed the approaches taken to resource

management in the Globus and PlanetLab systems,
attempted to trace back to starting assumptions the
differences in these solutions, and explored scenarios
where the two platforms can cooperate to the benefit of
both user communities. We believe that this work is a
key first step to identifying pieces that could be shared
by the two communities, pieces that are
complementary, and how Globus and PlanetLab might
ultimately evolve together.

We conclude by noting ‘experiences’ that could
potentially be ported from one system to the other:

PlanetLab: Promote interoperability between
services. As PlanetLab moves towards a production
platform and as the number of services grows, it is
likely that both client applications and PlanetLab
services will need to interoperate with other PlanetLab
services. To facilitate this interoperation, PlanetLab
should provide guidelines for service interoperability.
We believe that OGSA work on uniform service
discovery, representation, invocation, error
notification, and the like is a good starting point.
Uniform handling of user/service identities and
authentication are necessary at a minimum.

PlanetLab: Add support for identity delegation.
Currently PlanetLab does not provide identity
delegation mechanisms. While these mechanisms can
be implemented if needed by higher-level services,
there is a risk of ending up with incompatible services.
Proxy certificates [57] and GSI offer a possible model.

Globus: Add support for delegating resource usage
rights—and address virtualization. The PlanetLab
resource usage delegation approach rests on many
technical advances that came about after the Globus
project started, but that are not yet complete. PlanetLab
relies on kernel functions for fine-grained resource
control, which are well-developed in the research
community (e.g., Scout [52] and resource containers
[76]) but shockingly weak in deployed systems. Most
current Globus compatible resource schedulers employ
identity delegation only. As fine-grained resource
control technologies mature and gain deployment, the
WS-Agreement protocol can be used as vehicle to
experiment with global schedulers based on delegating
the right to consume resources, building on PlanetLab
experience using SHARP [2] and other global
schedulers. WS-Agreement can also provide a basis for
negotiating other aspects of resource virtualization,
such as installed software and network connectivity.

Globus: Integrating community contributions.
PlanetLab’s setup as a single VO enables an effective
feedback loop to integrate community contributions.
User contributions appear first as service deployments,
which, if proven successful, can be integrated in the
testbed infrastructure if they are considered ‘public
goods’ , or continue to live as independent services
provided an appropriate solution to compensate their
providers is found. For grids, user contributions may
take a similar path at the VO level. However, this
limits the impact user contributions have on the grid
community as a whole. Contributions to the entire
Globus Toolkit are generally service implementations –
arguably with a more laborious adoption and
deployment process. One possible solution to
streamline the adoption process of user contributions
for Globus is to enable VOs to outsource non-critical
services to a PlanetLab-style backbone.

Finally, we note that both Globus and PlanetLab
face significant challenges as they seek to construct
open but secure distributed systems in an increasingly
hostile Internet. There will surely be advantages to
pooling experiences and expertise as the two
communities attack critical security and policy issues.

7. Acknowledgements

We are grateful to Robert Adams, Paul Brett,

Lenitra Clay, Adriana Iamnitchi, Anne Rogers, and
Vijay Tewary for insightful discussions and support.
Matei Ripeanu was an intern with Intel Research
during the initial stages of this research.

8. References

[1] I. Foster and C. Kesselman, "Globus: A Metacomputing

Infrastructure Toolkit," International Journal of
Supercomputer Applications, vol. 11, pp. 115-128, 1997.

[2] Y. Fu, J. Chase, B. N. Chun, S. Schwab, and A. Vahdat,
"SHARP: An Architecture for Sercure Resource
Peering," ACM 19th Symposium on Operating Systems
Principles, Lake George, NY, 2003.

[3] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, "The
Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration,"
Globus Project 2002.

[4] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, "A
Security Architecture for Computational Grids," ACM
Conference on Computers and Security, 1998, pp. 83-91.

[5] K. Czajkowski, A. Dan, J. Rofrano, S. Tuecke, and M.
Xu, "WS-Agreement: Agreement-based Grid Service
Management," Global Grid Forum, 2003.

[6] "Global Grid Forum http://www.grid-forum.org," 2002.
[7] I. Foster and C. Kesselman, The Grid: Blueprint for a

New Computing Infrastructure (Second Edition),
Morgan-Kaufmann, 2004.

[8] C. Catlett and L. Smarr, "Metacomputing,"
Communications of the ACM, vol. 35, pp. 44--52, 1992.

[9] W. E. Johnston, D. Gannon, and B. Nitzberg, "Grids as
Production Computing Environments: The Engineering
Aspects of NASA's Information Power Grid," 8th IEEE
Symposium on High Performance Distributed Computing
(HPDC-8), 1999.

[10] G. Allen, T. Dramlitsch, I. Foster, T. Goodale, N.
Karonis, M. Ripeanu, E. Seidel, and B. Toonen,
"Supporting Efficient Execution in Heterogeneous
Distributed Computing Environments with Cactus and
Globus," SC'2001, Denver Colorado, 2001.

[11] J. Beiriger, W. Johnson, H. Bivens, S. Humphreys, and
R. Rhea, "Constructing the ASCI Grid," 9th IEEE
Symposium on High Performance Distributed Computing
(HPDC-9), 2000.

[12] I. Foster, E. Alpert, A. Chervenak, B. Drach, C.
Kesselman, V. Nefedova, D. Middleton, A. Shoshani, A.
Sim, and D. Williams, "The Earth System Grid II:
Turning Climate Datasets Into Community Resources,"
Annual Meeting of the American Meteorological Society,
2002.

[13] C. Catlett, "The TeraGrid: A Primer," www.teragrid.org,
2002.

[14] L. Peterson, T. Anderson, D. Culler, and T. Roscoe, "A
Blueprint for Introducing Disruptive Technology into the
Internet," ACM HotNets-I Workshop, Princeton, NJ,
2002.

[15] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin,
S. Muir, L. Peterson, T. Roscoe, T. Spalink, and M.
Wawrzoniak, "Operating System Support for Planetary-
Scale Network Services," NSDI'04, San Francisco, CA,
2004.

[16] L. Wang, V. Pai, and L. Peterson, "The Effectiveness of
Request Redirection on CDN Robustness," 5th
Symposium on Operating Systems Design and
Implementation (OSDI'02), Boston, MA, 2002.

[17] N. Feamster, M. Balazinska, G. Harfst, H. Balakrishnan,
and D. Karger, "Infranet: Circumventing Censorship and
Surveillance," 11th USENIX Security Symposium, San
Francisco, CA, 2002.

[18] Y.-H. Chu, S. G. Rao, S. Seshan, and H. Zhang, "A Case
for End System Multicast," IEEE Journal on Selected
Areas in Communication (JSAC), Special Issue on
Networking Support for Multicast, vol. 20, 2002.

[19] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and
R. Morris, "Resilient Overlay Networks," 18th ACM
Symposium on Operating Systems Principles, Banff,
Canada, 2001.

[20] N. Spring, D. Wetherall, and T. Anderson, "Scriptroute:
A Public Internet Measurement Facility," USENIX
Symposium on Internet Technologies and Systems, 2003.

[21] R. Wolski, "Forecasting Network Performance to
Support Dynamic Scheduling Using the Network
Weather Service," 6th IEEE Symposium on High
Performance Distributed Computing, Portland, OR, 1997.

[22] I. Pratt, D. McAuley, and S. Hand, "PlanetProbe
(http://www.cl.cam.ac.uk/Research/SRG/netos/)," 2003.

[23] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H.
Balakrishnan, "Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications," SIGCOMM 2001, San
Diego, USA, 2001.

[24] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker, "A Scalable Content-Addressable Network,"
SIGCOMM 2001, San Diego USA, 2001.

[25] A. Rowstron and P. Druschel, "Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems," IFIP/ACM International
Conference on Distributed Systems Platforms
(Middleware), Heidelberg, Germany, 2001.

[26] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph,
"Tapestry: An infrastructure for fault-tolerant wide-area
location and routing," UC Berkeley, Technical Report
CSD-01-1141, 2001.

[27] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P.
Eaton, D. Geels, R. Gummadi, S. Rhea, H.
Weatherspoon, W. Weimer, C. Wells, and B. Zhao,
"OceanStore: An Architecture for Global-Scale Persistent
Storage," 9th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS 2000), Cambridge, MA, 2000.

[28] M. Castro, P. Druschel, A. M. Kermarrec, and A.
Rowstron, "SCRIBE: A large-scale and decentralised
application-level multicast infrastructure," IEEE Journal

on Selected Areas in Communications (JSAC) (Special
issue on Network Support for Multicast
Communications), 2002.

[29] H. Yu and A. Vahdat, "Design and Evaluation of a
Conit-based Continuous Consistency Model for
Replicated Services," ACM Transactions on Computer
Systems (TOCS), 2002.

[30] P. Avery and I. Foster, "The GriPhyN Project: Towards
Petascale Virtual Data Grids," GriPhyN-2001-15, 2001.

[31] "The DataGrid Architecture," EU DataGrid Project
DataGrid-12-D12.4-333671-3-0, 2001.

[32] "Particle Physics Data Grid Project (PPDG),
www.ppdg.net."

[33] P. Avery, I. Foster, R. Gardner, H. Newman, and A.
Szalay, "An International Virtual-Data Grid Laboratory
for Data Intensive Science," Technical Report GriPhyN-
2001-2, 2001.

[34] J. Annis, Y. Zhao, J. Vöckler, M. Wilde, S. Kent, and I.
Foster, "Applying Chimera virtual data concepts to
cluster finding in the Sloan Sky Survey," SC’02, 2002.

[35] L. Childers, T. Disz, R. Olson, M. E. Papka, R. Stevens,
and T. Udeshi, "Access Grid: Immersive Group-to-Group
Collaborative Visualization," 4th International Immersive
Projection Technology Workshop, 2000.

[36] C. Kesselman, T. Prudhomme, and I. Foster,
"Distributed Telepresence: The NEESgrid Earthquake
Engineering Collaboratory," in The Grid: Blueprint for a
New Computing Infrastructure (2nd Edition), I. Foster,
Ed.: Morgan Kaufmann, 2004.

[37] T. DeFanti and R. Stevens, "Teleimmersion," in The
Grid: Blueprint for a New Computing Infrastructure, I.
Foster and C. Kesselman, Eds: Morgan Kaufmann, 1999,
pp. 131-155.

[38] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I.
Stoica, "Wide-area cooperative storage with CFS," 18th
ACM Symposium on Operating Systems Principles
(SOSP '01), Chateau Lake Louise, Banff, Canada, 2001.

[39] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen,
"Ivy: A Read/Write Peer-to-peer File System," Fifth
Symposium on Operating Systems Design and
Implementation (OSDI'02), Boston, MA, 2002.

[40] K. Fu, M. F. Kaashoek, and D. Mazières, "Fast and
secure distributed read-only file system," ACM
Transactions on Computer Systems, vol. 20, pp. 1-24,
2002.

[41] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S.
Shenker, and I. Stoica, "Querying the Internet with
PIER," 30th International Conference on Very Large
Data Bases (VLDB’03), 2003.

[42] M. Wawrzoniak, L. Peterson, and T. Roscoe, "Sophia:
An Information Plane for Networked Systems,"
PDN-03-014, June 2003.

[43] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan,
"IrisNet: An Architecture for a World-Wide Sensor
Web," IEEE Pervasive Computing., pp. 22-33, 2003.

[44] Ganglia, http://ganglia.sourceforge.net/, 2001.
[45] J. Touch, "Dynamic Internet Overlay Deployment and

Management Using the X-Bone," Computer Networks,
vol. 36, pp. 117-135, 2001.

[46] L. Pearlman, C. Kesselman, S. Gullapalli, B. F. Spencer,
J. Futrelle, K. Ricker, I. Foster, P. Hubbard, and C.
Severance, "Distributed Hybrid Earthquake Engineering

Experiments: Experiences with a Ground-Shaking Grid
Application," 13th IEEE International Symposium on
High Performance Distributed Computing, Honolulu
(HPDC-13), HA, 2004.

[47] M. Ellisman and S. Peltier, "Medical Data Federation:
The Biomedical Informatics Research Network," in The
Grid: Blueprint for a New Computing Infrastructure (2nd
Edition), I. Foster and C. Kesselman, Eds.: Morgan
Kaufmann, 2004.

[48] B. Chun and T. Spalink, "Slice Creation and
Management," PDN-03-13, June 2003.

[49] I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy
of the Grid: Enabling Scalable Virtual Organizations,"
International Journal of High Performance Computing
Applications, vol. 15, pp. 200-222, 2001.

[50] K. Keahey, M. Ripeanu, and K. Doering, "Dynamic
Creation and Management of Runtime Environments in
the Grid," GGF Workshop on Designing and Building
Grid Services, Chicago, IL, October 2003.

[51] M. Gasser and E. McDermott, "An Architecture for
Practical Delegation in a Distributed System," IEEE
Symposium on Research in Security and Privacy, 1990.

[52] A. Bavier, T. Voigt, M. Wawrzoniak, L. Peterson, and P.
Gunningberg, "SILK: Scout Paths in the Linux Kernel,”
TR 2002-009, Department of Information Technology,
Uppsala University, Uppsala, Sweden 2002.

[53] K. Czajkowski, I. Foster, and C. Kesselman, "Resource
and Service Management," in The Grid: Blueprint for a
New Computing Infrastructure, I. Foster and C.
Kesselman, Eds.: Morgan Kaufmann, 2004.

[54] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S.
Tuecke, "A Community Authorization Service for Group
Collaboration," IEEE 3rd International Workshop on
Policies for Distributed Systems and Networks, 2002.

[55] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke,
J. Volmer, and V. Welch, "Design and Deployment of a
National-Scale Authentication Infrastructure," IEEE
Computer, vol. 33, pp. 60-66, 2000.

[56] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K.
Czajkowski, J. Gawor, C. Kesselman, S. Meder, L.
Pearlman, and S. Tuecke, "Security for Grid Services,"
12th International Symposium on High Performance
Distributed Computing (HPDC-12), 2003.

[57] V. Welch, I. Foster, C. Kesselman, O. Mulmo, L.
Pearlman, S. Tuecke, J. Gawor, S. Meder, and F.
Siebenlist, "X.509 Proxy Certificates for Dynamic
Delegation," presented at 3rd Annual PKI R&D
Workshop, Gaithersburg, MD, 2004.

[58] S. Tuecke, D. Engert, I. Foster, M. Thompson, L.
Pearlman, and C. Kesselman, "Internet X.509 Public Key
Infrastructure Proxy Certificate Profile," IETF draft,
2001.

[59] J. Chase, D. Irwin, L. Grit, J. Moore, and S. Sprenkle,
"Dynamic Virtual Clusters in a Grid Site Manager," 12th
IEEE International Symposium on High Performance
Distributed Computing (HPDC-12), 2003.

[60] D. Abramson, R. Sosic, J. Giddy, and B. Hall, "Nimrod:
A Tool for Performing Parameterised Simulations Using
Distributed Workstations," 4th IEEE Symposium on
High Performance Distributed Computing, 1995.

[61] H. Dail, O. Sievert, F. Berman, H. Casanova, A.
YarKhan, S. Vadhiyar, J. Dongarra, C. Liu, L. Yang, D.

Angulo, and I. Foster, "Scheduling in the Grid
Application Development Software Project," in Resource
Management in the Grid: Kluwer, 2003.

[62] The Condor Project, http://www.cs.wisc.edu/condor/.
[63] S. Vadhiyar and J. Dongarra, "Metascheduler for the

Grid," 11th IEEE International Symposium on High
Performance Distributed Computing (HPDC-11),
Edinburgh, Scotland, 2002.

[64] K. Czajkowski, I. Foster, and C. Kesselman, "Co-
allocation Services for Computational Grids," 8th IEEE
Symposium on High Performance Distributed Computing
(HPDC-8), 1999.

[65] "Community Scheduling Framework (CSF),
http://www.platform.com/," 2003.

[66] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and
S. Tuecke, "The Data Grid: Towards an Architecture for
the Distributed Management and Analysis of Large
Scientific Data Sets," J. Network and Computer
Applications, pp. 187-200, 2001.

[67] "Globus Toolkit - Reliable File Transfer Service” www-
unix.globus.org/toolkit/reliable_transfer.html, 2003.

[68] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I.
Foster, C. Kesselman, S. Meder, V. Nefedova, D.
Quesnel, and S. Tuecke, "Data Management and Transfer
in High-Performance Computational Grid
Environments," Parallel Computing Journal, 2001.

[69] M. Zhang, J. Lai, A. Krishnamurthy, L. Peterson, and R.
Wang, "Improving Performance and Reliability with
Multi-Path TCP," unpublished, Princeton University
2004.

[70] H. Tahilramani Kaur, S. Kalyanaraman, A. Wesss, S.
Kanwar, and A. Gandhi, "BANANAS: An Evolutionary
Framework for Explicit and Multipath Routing in the
Internet," SIGCOMM FDNA Workshop, 2003.

[71] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S.
Tuecke, "Condor-G: A Computation Management Agent
for Multi-Institutional Grids," 10th IEEE International
Symposium on High Performance Distributed Computing
(HPDC-10), San Francisco, California, 2001.

[72] D. Thain, J. Basney, S.-C. Son, and M. Livny, "The
Kangaroo Approach to Data Movement on the Grid,"
10th IEEE International Symposium on High
Performance Distributed Computing (HPDC-10), San
Francisco, California, 2001.

[73] K. Ranganathan and I. Foster, "Decoupling Computation
and Data Scheduling in Distributed Data-Intensive
Applications," 11th IEEE International Symposium on
High Performance Distributed Computing (HPDC-11),
Edinburgh, Scotland, 2002.

[74] T. Kosar and M. Livny, "Stork: Making Data Placement
a First Class Citizen in the Grid," 24th IEEE Int.
Conference on Distributed Computing Systems
(ICDCS2004), Tokyo, Japan, 2004.

[75] The_Grid2003_Project, "The Grid3 Production Grid:
Principles and Practice, Robert Gardner," 13th IEEE
International Symposium on High Performance
Distributed Computing,, Honolulu, HA, 2004.

[76] G. Banga, P. Druschel, and J. C. Mogul, "Resource
containers: A new facility for resource management in
server systems," 5th Symposium on Operating Systems
Design and Implementation (OSDI-5), 1999.

