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Abstract 
 

PlanetLab and Globus Toolkit are gaining 
widespread adoption in their respective communities. 
Although designed to solve different problems–
PlanetLab is deploying a worldwide infrastructure 
testbed for experimenting with network services, while 
Globus is offering  general, standards-based, software 
for running distributed applications over aggregated, 
shared resources—both build infrastructures that 
enable federated, extensible, and secure resource 
sharing across trust domains. Thus, it is instructive to 
compare their resource management solutions. To this 
end, we review the approaches taken in the two 
systems, attempt to trace back to starting assumptions 
the differences in these approaches, and explore 
scenarios where the two platforms can cooperate to the 
benefit of both user communities. We believe that this 
is a key first step to identifying pieces that could be 
shared by the two communities, pieces that are 
complementary, and how Globus and PlanetLab might 
ultimately evolve together. 

 
1. Introduction 

 
The PlanetLab project is deploying and managing a 

worldwide infrastructure testbed for experimenting 
with a new class of network services. The Globus 
Alliance is developing a general, standards-based, 
software toolkit for running distributed applications 
over aggregated, shared resources. The two systems 
have many similarities in their user communities, 
goals, approaches, and technologies, but also important 
differences. 

In this paper, we take a first step towards 
elucidating these commonalities and differences by 
undertaking a comparison of the approaches to 
resource management in the two systems. Although 
resource management is neither the complete nor final 
goal of either project, from a resource management 

perspective both PlanetLab and Globus attack similar 
problems: both need to discover, monitor, and allocate 
resources to applications/services in a coordinated, 
secure, and resilient fashion. It is therefore natural to 
compare the two systems to understand differences in 
the underlying goals, premises, and assumptions, and 
how these technical differences shape the two evolving 
architectures.  Indeed, we believe that this 
understanding is key to identifying which pieces could 
transfer across domains (e.g., which wheels might one 
community reinvent, or avoid reinventing), which 
pieces are complementary, and how Globus and 
PlanetLab might ultimately evolve together. 

Before proceeding with this comparison, we note 
three caveats. First, both Globus and PlanetLab are 
active research projects. Thus, we attempt to compare 
both their existing and their planned functionality and 
features. Moreover, aspects of this comparison are 
likely to become obsolete as the two projects evolve. 

Second, while we focus here on comparing and 
contrasting resource management abstractions and 
mechanisms, the two projects are to a large degree 
complementary: Globus and Open Grid Services 
Architecture (OGSA) define protocols, interfaces, and 
behaviors for distributed resource management (e.g., 
WS-Agreement [5]) from which distributed systems 
can be constructed. PlanetLab developers, on the other 
hand, focus to a larger degree on implementing 
interfaces/behaviors to manage local systems with 
global behaviors left to the services built above this 
common base. 

Table 1: Abbreviations used. 
GT Globus Toolkit [1] 
GT3 Globus Toolkit version 3 [1] 
VO Virtual Organization 
WSRF Web Services Resource Framework  
OGSA Open Grid Services Architecture [3] 
GSI Grid Security Infrastructure [4] 
VM Virtual Machine 

 



 

Third, key differences ultimately influence the two 
solutions: Globus is a software toolkit that is based on 
standards and has deployments. PlanetLab is a 
deployment that has a software system and may 
ultimately influence or produce standards. For 
example, GT3 has multiple deployments while 
PlanetLab, at least in its current instantiation, is 
building the equivalent of a single deployment. The 
PlanetLab Consortium produces the PlanetLab 
software and manages its single deployment on a rather 
homogeneous hardware/software base. In contrast, the 
multiple deployment assumption requires Globus 
developers to work with fewer assumptions on 
participating resources, on existing infrastructure 
deployments (e.g., security infrastructure), or on the 
performance parameters of these deployments should 
achieve.  

The approach to standardization, perhaps a side 
effect of different maturity stages, has a similarly 
strong influence: the Globus project works closely with 
Global Grid Forum [6], OASIS, IETF, and W3C to 
define standards and gain community acceptance. 
PlanetLab infrastructure solutions are based on “rough 
consensus and working code”  and focus on efficient 
testbed operations; they might ultimately influence or 
produce standards but PlanetLab considers the 
infrastructure to be an open research topic that would 
be hindered by early standardization. 

With these caveats in mind, we now proceed to our 
comparison. We briefly describe Globus and PlanetLab 
(Section 2), contrast their starting assumptions (Section 
3), decompose solutions into basic mechanisms that we 
compare, try to highlight what appears to be a valuable 
technique for a particular sub-domain (Section 4), and 
present a scenario where Globus and PlanetLab can 
work together to provide services that are more 
valuable than either in isolation (Section 5). 

 
2. Background 

 
We first provide some background information on 

the Globus and PlanetLab systems. 
 

2.1.  Gr ids and the Globus Toolkit 
 
Grids aim to enable “resource sharing and 

coordinated problem solving in dynamic, multi-
institutional virtual organizations”  [7]. In other words, 
grids provide an infrastructure for federated resource 
sharing across trust domains. Grids evolved from the 
idea of metacomputing [1, 8]: building a uniform 
computing environment from diverse resources by 
defining standard network protocols and/or interposing 
a uniform API at the library level. Much like the 
Internet on which they build, current grids define 
protocols and middleware that can mediate access to a 

wide range of resources without requiring 
modifications to operating systems. Applications use 
services provided by this layer to discover, aggregate, 
and harness resources.  

The recently proposed WS-Resource Framework 
(WSRF) and its implementation in the Globus 
Toolkit v4, among others, define uniform mechanisms 
for managing remote state, creating a standard 
substrate for building virtual organizations (VOs) and 
developing new services and applications that exploit 
the resources shared within these VOs.  

WSRF and related Web Services and OGSA 
standards [3] are crucial to the Grid vision; they are  
the standards that make it possible to develop large-
scale, reliable, and interoperable grid applications and 
services. However, these standards are largely 
independent of the underlying resource management 
mechanisms used.  Thus the rest of this document will 
discuss them only superficially as we focus on 
mechanisms rather than standards or protocols.  

Globus Toolkit [1] is a collection of technologies (in 
their most recent instantiation, Web services-based and 
WSRF-compliant) that provides basic middleware to 
create VOs, addressing such issues as security, 
resource discovery, resource management, and data 
movement. At deployment, depending on available 
resources and planned applications, specific service 
implementations can be chosen and deployed, often in 
conjunction with other GT-based components. GT is in 
production use across VOs integrating resources from 
20-50 sites [9-13] with thousands of computational 
and data resources, and is expected to scale to 100s of 
sites with 1000s of sites as a future goal. 

 
2.2.  PlanetLab  

 
PlanetLab [14, 15] is a large-scale, distributed 

platform for new network services such as content 
distribution networks [16-18], robust routing overlays 
[19], network measurement services [20-22], scalable 
object location [23-26], network embedded storage 
[27], and application-level multicast [28, 29]. 
PlanetLab was envisioned as a global testbed for 
developing and deploying next-generation Internet 
services and offering them to others for experimental 
use and eventually perhaps for production use. The 
current PlanetLab user community consists primarily 
of researchers in networking and distributed systems, 
although PlanetLab may host services with user 
communities who are unaware of its existence.  The 
testbed is best suited to services that need multiple, 
possibly geographically dispersed “points of presence.”   

PlanetLab is designed to run on dedicated hosts. It 
provides purpose-built software from the ground-up, 
including an operating system (currently modified 
Linux) with extensions for virtualization. PlanetLab 



 

uses virtualization containers to manage resource 
allocation and to achieve isolation between a 
potentially large number of long-lived, independent 
services.  

PlanetLab provides its users with a virtual container 
at each host to act as a “point of presence”  for a 
service. From a service programmer’s perspective, 
PlanetLab provides a distributed virtual machine with a 
relatively low-level system abstraction, in the form of 
(a distributed set of) virtual containers and a familiar 
Unix-style API. It is envisaged that high-value 
services, such as storage or naming, will be built by the 
user community, and that successful ones will 
eventually be incorporated into the common core.  

PlanetLab currently includes more than 370 hosts at 
over 155 sites and is planned to grow to about 1000 
sites with a few nodes each plus a small number of 
sites with more substantial computing resources (e.g., 
clusters). A significant part of PlanetLab infrastructure 
is dedicated to managing resources both at the node 
level and in the aggregate. 

 
3. Different star ting assumptions … 

 
While the Globus and PlanetLab efforts tackle 

similar resource management problems they make 
further assumptions regarding resources and 
application requirements that sometimes lead to 
different solutions. Their starting assumptions differ in 
a number of key areas: the user communities they 
serve, the characteristics of the most frequent 
applications and resources, and the degree of control 
individual sites retain over resources made available to 
a VO. 

 
3.1.  User  communities 

 
PlanetLab and Globus serve distinct, although 

overlapping, user communities. The PlanetLab user 
community comprises primarily computer science 
researchers interested in experimenting with 
infrastructure for building “planetary scale”  services. 
The Globus user community is a heterogeneous pool of 
end-users (in science and industry), including computer 
scientists, interested in efficiently running their end-
user applications. This distinction results in different 
functionality, as noted in the following. 
��PlanetLab itself provides only minimal 

functionality, leaving services unconstrained in the 
way they  provide richer functionality to 
applications. One downside, at least in the short 
term, may be duplicated user effort when the same 
functionality is implemented in multiple services. 
The potential upside is having multiple 
implementations of similar functionality emerging 

as competing services that are selected by 
application writers based on merit.  

��Globus, on the other hand, aims to provide richer, 
standardized functionality closer to current 
application requirements – although there does also 
exist a rich ecology of higher-level tools and 
services that build on Globus mechanisms to address 
specific application requirements. 

One example is the security infrastructure: 
PlanetLab provides limited security functionality and 
services build their own security layer if needed (e.g., 
the SHARP [2] resource trading framework develops 
its own trust delegation and authentication mechanisms 
in the PlanetLab context). In contrast, Globus Toolkit’s 
Grid Security Infrastructure (GSI [4]) framework 
includes a complete machinery with protocols, APIs, 
and tools based on WS-Security mechanisms. 

 
3.2.  Application character istics.  

 
The applications and services targeted by the two 

communities have different characteristics that 
generally result in different resource requirements. 
��Grid applications are often compute-intensive [10-

12], although some also consume significant 
amounts of disk and/or network bandwidth as a 
result of focusing on, for example, integration of 
large-scale data repositories (data grids [30-33], 
virtual observatory [34]), collaboration [35], or the 
control of scientific instruments [36, 37].  

��PlanetLab services are generally network-intensive 
and rarely have significant CPU demands. 
Experimental services include network measurement 
[20-22], application-level multicast [28, 29], DHTs 
[23-26], storage [27, 38-40], resource allocation [2], 
distributed query processing [41-43], content 
distribution networks [16-18], monitoring [44], and 
overlay networks [19, 45]. 

On another axis, the two communities take different 
approaches to geographical resource distribution and to 
resource partitioning among services/applications. 
Roughly the difference can be summarized as follows: 
for PlanetLab services, embracing resource distribution 
is an objective, while for grid applications, resource 
distribution is a necessary evil.  

For some classes of PlanetLab services (e.g., 
network monitoring services) wide geographical 
distribution is essential. For grids, geographic resource 
distribution is typically a consequence of VO 
membership and rarely an application requirement. 
(There are exceptions, e.g., content distribution or 
collaboration applications.) 

Given a choice, few current grid applications will 
prefer to operate over a large set of resources with 
limited capabilities. In contrast, most network services 



 

envisioned for PlanetLab try to exploit the wide-area 
distribution (e.g., multiple network vantage points) and 
the (presumably) uncoordinated failures offered by a 
large set of resources, even if these resources come 
with limited individual capabilities. 
 
3.3.  Resources  

 
PlanetLab’s mission as a testbed and deployment 

platform for a new class of network services allows for 
little resource heterogeneity in the underlying 
infrastructure: no legacy hardware or software has to 
be supported. PlanetLab, assumes (and exploits) this 
lack of heterogeneity. For example, the security 
infrastructure is based on SSH, which excludes sites 
that require a different security model (say Kerberos) 
or certificate standard (e.g., X.509, PGP, SPKI). 

Currently, PlanetLab supports Intel-based desktop 
and server configurations and one operating system 
(Linux).  

Globus can operate on a wide range of devices: 
clusters, workstations, PDAs, file systems, databases, 
sensors, and scientific instruments can all be integrated 
into a VO. All major operating systems are supported 
in GT2 and the Java-based implementation of OGSA 
standards in GT3 and GT4 further expands the set of 
environments where Globus can be deployed. 

 
3.4.  Resource ownership 

 
Both Globus and PlanetLab aim to allow 

participating sites to retain control over local resources, 
e.g., by allocating local resources with site-specific 
priorities, by black- or white-listing users at the site 
level, or by specifying and enforcing site-specific 
usage policies.  

In the tradeoffs space (Figure 1) between autonomy 
offered to individual sites and the functionality that can 
be built at the federation level, Globus and PlanetLab 
make distinct decisions, as follows: 

PlanetLab limits the control individual sites have 

over their own resources in a number of ways: by 
mandating the operating system and key components 
of the security infrastructure, by allowing PlanetLab 
administrators ‘ root’  access on individual nodes, and 
by giving PlanetLab administrators access to a remote 
power button for each site. These decisions enable a 
faster evolution of the testbed, as a more compact set 
of software can evolve more quickly and software 
updates can be easily distributed and deployed by 
central administrators.  

In contrast, when using Globus, individual sites that 
bring resources to a VO typically relinquish much less 
control to external organizations—they might permit 
application communities to use tools such as Pacman 
to automate the deployment of application software to 
grid resources, but privileged services are firmly under 
the control of local site administrators. 

In this respect, one can say that PlanetLab 
emphasizes global coordination over local autonomy to 
a greater degree than Globus; PlanetLab sites 
relinquish more control to external administrators. 
 
4. … lead to different solutions  

 
Both PlanetLab and Globus are built using 

orthogonal sets of mechanisms that can be naturally 
grouped into two categories: mechanisms for managing 
resources at the individual node (or site) level and 
mechanisms that enable federated sharing of resources 
(i.e, for building virtual organizations). We compare 
Globus and PlanetLab solutions in each category. 

 
4.1.  Local resource management abstractions 

 
The two platforms have different foci. GT focuses 

on integrating, to the extent possible, existing resources 
with their hardware, operating systems, and local 
resource management and security infrastructure. GT 
provides, in effect, a set of unifying interfaces through 
which local resource management functionality can be 
discovered and used. (Some GT communities require 
standardization in hardware and define standard 
software suites that may include local resource 
management functions, as in NEESgrid [46] and  
BIRN [47]. However, it is rare that there is not some 
amount of heterogeneity to manage.) 

Assume, for example, an application that runs one 
hour starting at midnight every day for a week on the 
same node. The manager or user of such an application 
must discover a node that supports reservations, query 
for available timeslots, make a reservation, claim the 
reservation each day, and bind it to the application, 
with all of these functions accessed via standard 
protocols that map to node-specific functionality. 

PlanetLab, in contrast, specifies the individual node 
architecture and functionality from the hardware level 
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Figure 1: PlanetLab and Globus make different 
decisions when balancing between individual site 
autonomy and functionality offered at the VO level. 
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up. The result is a platform where all participating 
nodes/sites provide uniform individual resource 
management functionality [48]. As a result, PlanetLab 
does not need to build the ‘glue’  level that GT provides 
to enable uniform access to, and management of, a 
heterogeneous set of resources.  

The main abstraction offered by a PlanetLab node is 
a virtual machine (VM): each user of a PlanetLab node 
is presented with the image of a raw, dedicated 
machine. Currently the interface is the familiar Unix 
API, but in the future it will likely be a true virtual 
machine with improved isolation and better user 
control over the operating system and local resources. 
The emphasis here is on simplicity and generality on 
the assumption of a homogeneous hardware/software 
base: Intel-based servers running software whose 
bottom layer is dictated by PlanetLab.  

In contrast, Globus evolved from metacomputing 
[8], the idea of building a uniform computing 
environment from diverse resources by interposing a 
uniform API at the library level and standard protocols 
at the network layer [49]. Thus Globus can embrace-
and-extend the full range of deployed systems, 
including legacy OS and security architectures. The 
corresponding abstractions offered by the Globus 
Toolkit are the service (for GT3) or job (for GT2 and 
GT3). GT3 service interfaces are being defined not 
only for management of ‘ jobs’  but also for managing 
computational resources, via for example the creation 
and initialization of a new virtual machine [50]. 

All local authorization and resource allocation 
decisions revolve around these abstractions: Is the user 
allowed to create a VM or invoke an operation on a 
grid service (run a job) on this node? Is a VM or grid 
service allowed to access certain resources? How are 
resource allocations specified and then bound to a VM 
or to a service/job? These questions are active research 
topics within the Globus and PlanetLab communities. 

 
4.2. Global federation-building mechanisms 

 
Delegation [51] is a key mechanism for enabling 

federated sharing of resources. In the rest of this 
section we compare the delegation approaches used in 
Globus and PlanetLab and show how they are 
exploited in the two systems to build global resource 
allocation/scheduling services. 

 
4.2.1. Delegation mechanisms are essential to 
building federations. Resource management 
functionality at the VO level is generally based on 
(1) resource usage delegation: the ability of a node/site 
to delegate the right to consume its resources and/or 
(2) identity delegation: principals’  ability to delegate 
their identity to other principals to act on their behalf.  

Resource usage delegation 

Both PlanetLab and Globus projects are developing 
mechanisms and protocols to enable a node or a 
site-wide resource manager to delegate resource 
consumption rights to an application or to a broker. 

PlanetLab builds on resource capabilities [48] to 
offer the basic mechanism for resource usage 
delegation. PlanetLab resource capabilities represent 
time-limited claims over low-level resources available 
at a node or site: fair-share or dedicated use for CPU, 
network, memory, disk, network ports, file descriptors, 
etc. A local resource manager keeps track of resources 
available at a node and hands over capabilities to 
brokers that operate at the VO level.  

A PlanetLab capability is represented by a 160-bit 
opaque identifier. Services that use and transfer these 
capabilities might add a more detailed description of 
the underlying resource together with authentication, 
authorization, or trust building mechanisms. 
(PlanetLab however does not standardize at this level.) 
SILK [52], a Linux kernel module, is the OS-level 
mechanism that supports and enforces capabilities. 

At a higher-level, the corresponding solution under 
development in the grid community is the 
WS-Agreement protocol [5]. The goal of 
WS-Agreement is to define a uniform representation of 
agreements between resource/service providers and 
consumers and to formalize the negotiation process 
used to establish and modify agreements [53]. Note 
that a capability is in fact an implied agreement: the 
issuer of the capability agrees to provide some 
specified resources during a specified time interval to 
the capability holder. 

WS-Agreement specifies a standard representation 
for agreements as Web Services, a (re)negotiation 
protocol, agreement states and their lifetimes, a 
standard way to describe agreement monitoring 
services, etc. The enforcement mechanism on the 
provider side is not specified: it can be a PlanetLab 
capability, a queuing system supporting reservations on 
a cluster, or any ad-hoc solution.  

Note that these two efforts are complementary: 
PlanetLab focuses on implementing capabilities for 
various resource types and on integrating the 
fine-grained resource control they offer with VM 
functionality; WS-Agreement focuses on uniform 
agreement representation, naming and lifecycle.  

Both PlanetLab and Globus intend to use 
capabilities or agreements to enable resource 
delegation. In PlanetLab a resource owner (the node 
manager) delegates the right to use a local resource by 
handing the corresponding capability to a user or 
service. Users/services acquire required capabilities 
directly from node managers or from specialized 
brokers that trade capabilities and then bind these 



 

capabilities to a VM. The scenario imagined for WS-
Agreement is similar: users negotiate agreements with 
resource owners and may later bind these agreements 
to submitted jobs or other running services. 

Identity delegation 

In many resource federation scenarios, a principal 
needs to perform certain actions on behalf of another 
principal. For example: user X calls service S1 and S1 
needs to call S2 on behalf of X. If accounting or 
authorization decisions made at S2 depend on the 
original caller identity (X), then S1 needs to provide S2 
an unforgeable, unrepudiable claim that the call is 
made on behalf of X. Most Globus-compatible 
schedulers are built using identity delegation: the 
scheduler receives jobs descriptions from users and 
submits them to individual sites on behalf of these 
users. This focus on identity delegation is motivated in 
part by the frequent requirement to be able to associate 
resource usage with specific individuals rather than 
communities or services. (The related Community 
Authorization Service [54] implements a capability-
based service). We briefly summarize below the 
existing functionality. 

The Grid Security Infrastructure (GSI) [4, 55, 56] 
uses time-limited proxy certificates [57], stored with 
unencrypted private keys, to address the identity 
delegation issue. These certificates are correctly 
formatted X.509 certificates [58], except that they are 
marked as proxy certificates and are signed by the user 
that delegates its identity rather than a Certificate 
Authority. Choosing the lifetime of proxy certificates 
requires a compromise between allowing long-term 
jobs to continue to run as authenticated entities and the 
need to limit the damage in the event a proxy is 
compromised. Proxy certificates with restricted rights 
are another way of limiting the potential damage 
caused by a stolen proxy. Authorization software run 
by relying parties recognizes proxy certificates and 
searches the certificate chain until the user certificate is 
found in order to do the authorization based on that 
identity token.  

PlanetLab currently does not provide a mechanism 
for identity delegation. However, services can 
implement their own mechanisms. 
 
4.2.2. Global resource allocation / scheduling. 
Strictly speaking, schedulers and resource allocation 
brokers are not part of either Globus or PlanetLab. 
However, it is relevant to compare existing and 
planned implementations for the two platforms. 
Together with resource management mechanisms at 
the individual node level, the ability to delegate is key 
to coordinated resource management at the VO level.  

Generally schedulers built for PlanetLab employ 
resource usage delegation while those built for Globus 

exploit identity delegation. PlanetLab node managers 
and brokers push capabilities (resource reservations) 
from resources to the users that originate requests.  
��Existing functionality is, in practice, primitive: most 

resources allocations are ‘best-effort’  and resources 
that cannot be shared (e.g., network ports) are 
allocated on a first-come-first-served basis. 

��Planned functionality: multiple brokers/schedulers, 
presumably using different incentive models, 
implementing different allocation policies, or having 
application specific knowledge, will operate 
independently and dynamically share PlanetLab 
resources. This arrangement is enabled by the ability 
of each site/node to delegate resource usage rights to 
multiple brokers at fine granularity.  
This vision is quickly materializing: SHARP ([2], 
presented in more detail in Figure 2) is an example 
of a resource allocation framework currently 
developed for PlanetLab. With SHARP, sites can 
trade resources with dynamically discovered partners 
or contribute resources to federations according to 
local policies. Multiple resource management 
systems may coexisteither above or alongside 
SHARPoperating in independent PlanetLab slices.   
Application services such as batch schedulers may 
also exist within slices, scheduling the resources 
under their control according to local policies  [59]. 

In Globus the flow is reversed: brokers pass job 
requests from users or applications to resources – 

Figure 2: SHARP, a PlanetLab resource 
management example. A broker (agent) acquires 
tickets representing resources from sites A and B 
(steps 1 and 2). An application acquires these tickets 
from the broker (3, 4) and tries to redeem the tickets at 
their issuers for hard resource reservations (or leases) 
(5, 6). Once the application has obtained the leases it 
can create a VM, bind the resources represented by 
the leases to the VM (7), and start a service. Note that 
this mechanism allows individual sites/nodes to split 
their resources and distribute them to multiple brokers 
that operate independently. (Source: [2]) 
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ideally based on knowledge of both resource 
availability and allocation policies. Most such brokers 
use identity delegation: a user sends a job description 
to the broker, which either submits the job or forwards 
it to another broker, all using the delegated identity of 
the user that originated the job. In some environments, 
the broker may forward the job under its own identity 
or under the identity of the VO with which the user is 
associated. 
��Existing functionality: Numerous VO-level 

schedulers (or ‘meta-schedulers’ ), some domain- or 
application-specific, have been developed by various 
groups (e.g., Nimrod-G [60], GrADS [61], DAGman 
and Condor-G [62], ASCI DRM [11], [63], EU 
DataGrid [31]). In addition, GT includes a co-
allocation broker, DUROC [64]. 

��Planned functionality: as one example of efforts 
within the community, Platform Computing is 
developing the Community Scheduler Framework 
[65] based on the WS-Agreement specification.  

 
5. PlanetLab and Globus together   

 
The preceding discussion has focused on comparing 

and contrasting PlanetLab and Globus resource 
management solutions. However, we view the two 
efforts as compatible and complementary rather than 
competing. PlanetLab can be considered as an instance 
of a larger Grid agenda that attempts to simplify 
deployment for a narrower range of platforms and 
applications. It is focusing on developing capabilities 
(e.g., wide-area monitoring and instrumentation) that 
extend a piece of the Grid agenda, without necessarily 
excluding other pieces. As a platform, PlanetLab 
enables the layering of Globus—or of any alternative 
environment for interoperable heterogeneous 
computing—above the primitive support it provides. In 
other words, PlanetLab is just one of many platforms 
that can host Globus, and Globus is just one distributed 
systems environment that can run over PlanetLab. 
Indeed, we have installed Globus on the PlanetLab 
testbed and built the machinery to enable user access to 
this deployment as a service [50]. 

We present here one scenario in which Globus and 
PlanetLab complement each other to provide benefits 
that neither would be able to provide alone. Data grids 
[66] address a problem occurring in an increasing 
number of fields in which large data collections are 
important community resources. These data collections 
can be large (1012 to 1015 bytes) and are almost always 
geographically distributed, as are the computing and 
storage resources that scientific communities rely upon 
to store and analyze them.  

Globus is being used to build VOs around these 
shared data collections and to implement services for 
distributed data management, access, and analysis. In 

addition to security mechanisms or the ability to define 
access policies at the VO level (supported by the 
Community Authorization Service [54]) GT includes 
tools aimed at high-performance data transfers (e.g., 
GridFTP a reliable file transfer service [66-68]). These 
tools are integrated with Globus security and 
authorization infrastructure and can split data transfers 
over multiple TCP streams to increase transfer 
throughput when data is striped across multiple nodes 
at both ends. We can imagine experimental PlanetLab 
services such as mTCP [69] and BANANAS [70] 
being used to optimize such transfers, by monitoring 
the Internet and using multipath routing to improve 
transfer throughput between two endpoints. 

We believe that layering Globus on top of 
PlanetLab can significantly strengthen the data grid 
infrastructure. This architecture will benefit from the 
large PlanetLab deployed base and its ability to 
monitor the Internet to offer low-level networked 
services with improved performance and reliability, as 
in the case of the multi-path TCP data transfer service 
discussed above. Building on this set of lower level 
services, Globus can add a mature, widely adopted 
security infrastructure and higher-level services that 
are well integrated with user applications. 

More generally, data grids face the need to develop 
and deploy distributed services of various sorts, such as 
resource discovery (e.g., Giggle [71]), data distribution 
(e.g., Kangaroo [72, 73], Stork [74]), and the data 
movement services mentioned above. PlanetLab can 
contribute here in two ways: as a community, it can be 
a source of ideas and expertise; as a deployment, it can 
potentially be a place to deploy these services “ in the 
network”  rather than at the edges of the network as is 
currently being done within projects such as Grid3 [75] 
or EU DataGrid [31].  

On the other hand, PlanetLab could benefit from 
Globus experience in promoting service 
interoperability through uniform handling of identities 
and authentication, and of service discovery, 
representation, and invocation. 

 
6. Summary and recommendations 

 
We have reviewed the approaches taken to resource 

management in the Globus and PlanetLab systems, 
attempted to trace back to starting assumptions the 
differences in these solutions, and explored scenarios 
where the two platforms can cooperate to the benefit of 
both user communities. We believe that this work is a 
key first step to identifying pieces that could be shared 
by the two communities, pieces that are 
complementary, and how Globus and PlanetLab might 
ultimately evolve together. 

We conclude by noting ‘experiences’  that could 
potentially be ported from one system to the other: 



 

PlanetLab: Promote interoperability between 
services. As PlanetLab moves towards a production 
platform and as the number of services grows, it is 
likely that both client applications and PlanetLab 
services will need to interoperate with other PlanetLab 
services. To facilitate this interoperation, PlanetLab 
should provide guidelines for service interoperability. 
We believe that OGSA work on uniform service 
discovery, representation, invocation, error 
notification, and the like is a good starting point. 
Uniform handling of user/service identities and 
authentication are necessary at a minimum. 

PlanetLab: Add support for identity delegation. 
Currently PlanetLab does not provide identity 
delegation mechanisms. While these mechanisms can 
be implemented if needed by higher-level services, 
there is a risk of ending up with incompatible services. 
Proxy certificates [57] and GSI offer a possible model. 

Globus: Add support for delegating resource usage 
rights—and address virtualization. The PlanetLab 
resource usage delegation approach rests on many 
technical advances that came about after the Globus 
project started, but that are not yet complete. PlanetLab 
relies on kernel functions for fine-grained resource 
control, which are well-developed in the research 
community (e.g., Scout [52] and resource containers 
[76]) but shockingly weak in deployed systems. Most 
current Globus compatible resource schedulers employ 
identity delegation only. As fine-grained resource 
control technologies mature and gain deployment, the 
WS-Agreement protocol can be used as vehicle to 
experiment with global schedulers based on delegating 
the right to consume resources, building on PlanetLab 
experience using SHARP [2] and other global 
schedulers. WS-Agreement can also provide a basis for 
negotiating other aspects of resource virtualization, 
such as installed software and network connectivity. 

Globus: Integrating community contributions. 
PlanetLab’s setup as a single VO enables an effective 
feedback loop to integrate community contributions. 
User contributions appear first as service deployments, 
which, if proven successful, can be integrated in the 
testbed infrastructure if they are considered ‘public 
goods’ , or continue to live as independent services 
provided an appropriate solution to compensate their 
providers is found. For grids, user contributions may 
take a similar path at the VO level. However, this 
limits the impact user contributions have on the grid 
community as a whole. Contributions to the entire 
Globus Toolkit are generally service implementations – 
arguably with a more laborious adoption and 
deployment process. One possible solution to 
streamline the adoption process of user contributions 
for Globus is to enable VOs to outsource non-critical 
services to a PlanetLab-style backbone. 

Finally, we note that both Globus and PlanetLab 
face significant challenges as they seek to construct 
open but secure distributed systems in an increasingly 
hostile Internet. There will surely be advantages to 
pooling experiences and expertise as the two 
communities attack critical security and policy issues. 
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