
Distributed System Management:
PlanetLab Incidents and Management Tools

Robert Adams
Intel Corporation

PDN–03–015

November 2003

Status: Ongoing Draft.

Distributed System Management:
PlanetLab Incidents and Management Tools†

Robert Adams

Intel Corporation

4 November 2003

Abstract
PlanetLab is an open, global, distributed test bed for
developing, deploying and accessing planetary-scale
network services. Its goal is to be the infrastructure
for a new generation of applications and services in
the Internet. Supporting this new generation of
distributed applications and services in the open
Internet presents new challenges in support,
maintenance and administration.

This paper describes some of the management
incidents that occurred in the first year of PlanetLab
operation and describes some of the technologies that
have been developed to cope with these problems with
an eye to exploring the requirements for scalable
management of an open distributed computer system.

1 PlanetLab Operation
PlanetLab is an open, global, distributed test bed

for developing, deploying and accessing planetary-
scale network services [PLANETLAB]. As of
October 2003, there are more than 200 machines at 90
sites worldwide1 available to support both short-term
experiments and long-running network services. Over
the next few years, PlanetLab will grow to over 1000
nodes and host some of the newest and innovative
services available.

A small support team monitors the operation of
all the PlanetLab nodes and fields support emails from
users. The support team fulfills several tasks: keeping
PlanetLab running; supporting the installation and
operation of new PlanetLab nodes; fielding support
questions and problems; developing basic PlanetLab
user features; and developing tools for management
and tracking of PlanetLab operation.

To better understand how PlanetLab is run, what
follows is a brief description of how PlanetLab
operates.

PlanetLab is a collection of computers
distributed around the Internet. The individual
computers are called nodes. PlanetLab nodes run a

†

PlanetLab PDN: PDN-03-015. http://www.planet-
lab.org/pdn/pdn-03.015.pdf .
1 Status and size of PlanetLab is available at
http://www.planet-lab.org/.

standard version of Linux with some enhancements
for supporting multiple applications and users.

 Applications share a PlanetLab node by
residing in separate virtual servers. To each
application, the running environment looks like a
private Linux computer – a user has root access to the
system files and can install Linux packages (RPMs,
etc) as required. The system kernel has been modified
to use vservers [VSERVER] for each user of the
node. Vservers are akin to the “BSD jail” code and
gives each user of a node its own separate copy of the
system files and certain special privileges that make it
look like the user has complete control of the
computer.

PlanetLab is not about running an application on
one node. It’s about running distributed, decentralized
applications and services across many nodes. In
PlanetLab lingo, a slice is an application that cuts
across several nodes and a sliver is the part of a slice
that runs on one node. To support this ability for a
slice (application or service) to have access to multiple
nodes, PlanetLab implements a mechanism to create
and destroy slices across the testbed and to distribute
SSH keys that give users access to slivers on each
node.

Institutions and corporations join PlanetLab by
donating computers and becoming a site. Each site
has a principal investigator responsible for that site’s
use of PlanetLab. Individual researchers sign up for
PlanetLab accounts by supplying their name, site and
email address and additionally agreeing to the
PlanetLab Acceptable Use Policy [AUP].

At each of the sites, there is a local site
administrator responsible as the technical contact for
the nodes at the site. PlanetLab nodes are connected
to an institutions network and receive their IP address
and DNS entries from the hosting site.

The principal investigator controls access to
slices. At a university, for instance, it is common for
the principal investigator to be a faculty member
associated with several research programs. The
principal investigator assigns slices and their
associated PlanetLab resources to individual users by
associating the PlanetLab accounts with the slices.
The authorized users then use PlanetLab for their
experiments, research and development.

 - 1 -

http://www.planet-lab.org/pdn/pdn-03.015.pdf
http://www.planet-lab.org/pdn/pdn-03.015.pdf

PlanetLab’s initial implementation has the
account registration and slice assignment occurring at
a central location called PlanetLab Support.
PlanetLab Support is a web server and database that
holds the information on the accounts, slices and
nodes. Additionally, there are a small number of
people who maintain PlanetLab, keep it running and
respond to any problems that might arise.

Some observations from this organization:

• The applications, research and services
run on PlanetLab are not controlled or
certified by any central authority;

• Because most of the initial work will be
research, network traffic from PlanetLab
nodes will be pushing the boundaries of
Internet operation in both pattern and
volume;

• The individual nodes are at sites and thus
appear to be under the administration of
that site (who know even less about what
is run on the nodes);

• A very small team at PlanetLab Central
has the job of keeping PlanetLab running.

Running hundreds of nodes scattered across
multiple locations means that there will always be
some nodes that are unavailable. Over time, tools have
been developed and adapted to monitor the operation
of the nodes (these will be discussed later in the
paper), but outside of simple machine failures, most of
the support is around “incidents” that are initiated by
emails in the support email mailing list.

In 2003, the number of PlanetLab nodes has
grown from 100 to over 200. As seen in Figure 1, the
total available nodes (nodes that are accessible to
researchers) has risen steadily while the number of
unavailable nodes has stayed at a more or less steady
number of less than 20. Some of the notable spikes in
unavailable nodes are described later in this paper.

 - 2 -

0

50

100

150

200

250

1/
8/

03

2/
8/

03
3/

8/
03

4/
8/

03

5/
8/

03

6/
8/

03

7/
8/

03

8/
8/

03

9/
8/

03

Nodes
Down

BootCD

DowneyE1000

File desc Proxy

Figure 1: PlanetLab nodes and node availability for 20032

Emails

0
100
200
300
400
500
600
700

Ju
l-0

2

Aug
-02

Sep
-02

Oct-
02

Nov
-02

Dec
-02

Ja
n-0

3

Feb
-03

Mar-
03

Apr-
03

May
-03

Ju
n-0

3
Ju

l-0
3

Aug
-03

Sep
-03

Oct-
03

Figure 2: Number of support emails3

2 PlanetLab node availability information published at http://www.planet-lab.org/logs/scout-monitor/
3 Support emails available at http://sourceforge.net/projects/planetlab/

 - 3 -

2 Incidents
 We use the term incident to describe an event

that requires support time to resolve an operational
problem -- getting a node operational or repair a
software problem.

The following sections describe some of the
incidents that have occurred. The incidents are
described and then some lessons learned from that
particular incident are given. The names given to the
incidents correspond roughly to the subject line of the
PlanetLab support mailing list. A more complete list
of incidents is given in Appendix A.

From January 2003 to October 2003 incidents
are classified into four broad categories:

1. broken hardware and driver problems,

2. broken infrastructure software problems,

3. networking problems: bandwidth problems and
traffic type problems

4. problems with the applications or services

Appendix A lists the major events by category,
date and short description. The following section of
this paper describes each of these incident classes

Broken Hardware
PlanetLab, of course, has the usual problems

with hardware, peripherals and the associated driver
software. Additionally, the systems are remote and
not easy to diagnose or maintain.

“E1000”: On December 19, 2002. On this date,
someone noticed that one node at each site was
unavailable. The support team set about rebooting
nodes, which eventually returned all of nodes to
service, but nodes kept crashing thereafter. For
several weeks, PlanetLab Support was spending time
identifying crashed systems and local technical
support people had to reboot systems several times a
week. At one point, nearly 30% of the PlanetLab
nodes were not operational. Local technical contacts
reported that the console showed kernel panics mostly
from the “SILK” module. PlanetLab kernels have
special patches and modules that support the
virtualization environment and these panics suggested
the problem was in one of these.

Examination of the slice network activity logs
pointed to one slice that usually was logged in when
the node crashed with a panic. The experimenter was
asked to hold off their experiments and this
significantly reduced the number of system panics.
The developer of the SILK module examined the code
and trickles of information from the consoles of panics
systems lead people to suspect the queuing mechanism
of the E1000 Ethernet driver. It was finally noted that
the PlanetLab kernel included an old revision of the

driver for this card. A new kernel was built and
deployed and these kernel panics ceased.

Lessons: stress testing of the whole system
would have alleviated this problem. The testing must
include exercising the PlanetLab special modules and
the type of load PlanetLab experiments generate. It
was hypothesized that the fact that mapping
experiments make many short term connections to
many disparate systems – something “normal”
program don’t usually do – is what caused the
connection queuing mechanism in the driver to fail.

Another observation was the amount of people
time it took to manage, research, identify and fix this
problem. The local technical support people had to
physically access the nodes, read the console output
and reboot the systems. This identified the need for
better remote control of the systems.

“Memory Parity”: Twice nodes have been
made unavailable by memory parity errors. Memory
parity errors are reported on the console so they are
easy to detect if you have console access. This was
true in both cases (Jan 27, 2003 “UCLA memory” and
Mar 10, 2003 “Stanford memory”) and in each of
these cases, local technical contacts manually read and
reported the console output.

Lessons: Sometimes the hardware fails.
Capturing console output for panics is important for
diagnosis. Some sites had the consoles wired in a loop
(one system’s console out is wired to the next
system’s serial in) but this has proved unwieldy
because it was hard to get cables, hard to wire
correctly and never captured the offending events.
Eventually a special kernel module was added that
captured console output and saved it across reboots.

Broken Software
PlanetLab runs a modified version of Linux that

supports the isolation of environments between the
slices on a node, provide operational logging
information, and implement the login and access
mechanisms that support PlanetLab accounts. As with
any software, there are bugs.

“TCP connection problem”, February 27,
2003. The PlanetLab kernel contains patches that
tracks and supports network usage by each of the
virtual servers (slices). The “SILK” module interfaces
to the networking stack and collects statistics and
provides special access to “raw sockets” (a subset of
true raw sockets that allows the mapping and protocol
experiments that are common on PlanetLab). At the
end of February, a new version of the SILK module
was deployed in PlanetLab. In a day or two,
researchers started reporting problems with sockets
accessed from Java. The developer of the SILK
module was able to quickly identify a problem and a
new version of the module was distributed to
PlanetLab

 - 4 -

Lesson: thorough testing of new kernels and
kernel features is an obvious need. And the testing
must cover the types of application environments the
researchers are using – in this case, stress testing was
done but that didn’t show the problems with the Java
environment. Also, “rolling updates” are a good
strategy for updating the PlanetLab infrastructure –
update only a portion of PlanetLab, wait to see if there
problem, update to some more nodes, evaluate
success, etc.

“Cron hangage”: December 30, 2002.
Someone noticed that some of the maintenance cron
jobs look hung – they seem to have been running for
more than 5 hours. The day before, all of the
PlanetLab nodes had been rebooted for a software
update. This caused every node to connect to
PlanetLab Support and to download the updates. But
130 nodes, all trying to contact one update server,
caused long delays. The nodes eventually came up
and the cron jobs exited.

Lesson: even the PlanetLab infrastructure must
comprehend the problems of distributed systems. This
led to an evaluation of the boot and update mechanism
and of an eventual redesign. The current
implementation still relies on a central location for
update but future plans are for a totally decentralized
system as the supporting services become available.

Network
PlanetLab nodes are connected to the everyday

Internet from within their hosting institutions. The
interplay of experiments on PlanetLab and their
network environment causes incident of two types:
bandwidth (too much bandwidth used) and traffic (the
traffic pattern is outside normal profiles).

2.A.1 Excessive Bandwidth
“Bandwidth spikes”: November 26, 2002. A

university network administrator complained about
bandwidth spikes from three hosted PlanetLab nodes.
The high volume of network traffic was strictly
outbound and to destinations that did not exist. This
caused the border routers to do extra work for each
packet and the overall effect was to make the
university’s Internet connection unusable. The nodes
were disconnected.

Lesson: Experiments can exceed the usual
bandwidth limits and can generate traffic that causes
special problems. Per node bandwidth caps were
identified as a tool to manage this type of problem.

“Seattle meltdown”: December 6, 2002. A site
administrator took their PlanetLab nodes offline
because they saturated the local network. This was
traced to an experimenter measuring maximum
throughput of a networked application.

Lesson: Again, experimenters can exceed local
patterns. In this case, in addition to needing

bandwidth limiters, some education of the
experimenters was needed so they understood the
PlanetLab acceptable use policy and some of the
limitations of the environment.

“Canterbury bandwidth”: January 12, 2003.
The University of Canterbury, New Zealand reported
that their hosted PlanetLab nodes passed six gigabytes
of traffic in two weeks. At this site, network
bandwidth is charged for by the megabyte so large
traffic usage can run up a very large bill. This
problem has also occurred at some domestic
universities where bandwidth is charged by the
gigabyte. Some PlanetLab experiments are
specifically working on the problem of distributed
storage of large files and they tend to move large
amounts of data for sustained periods of time.

Lesson: A system of capping, limiting and
allocating network bandwidth is needed. The solution
should apply to balancing the usage of limited
bandwidth between slices on a node as well as
controlling the total node bandwidth and bytes used.

“ucb5 traffic”: June 2, 2003. The PlanetLab
support group sent a message to an experimenter
asking if the more than one terabyte of traffic they had
generated across PlanetLab was an expected feature of
their experiment.

Lesson: This is one of the first occurrences of
the PlanetLab monitoring tools making possible
problems visible and making proactive actions
possible.

2.A.2 Inappropriate Traffic
“port 0”: November 27, 2002. Some PlanetLab

nodes were sending large numbers of ICMP packets to
port 0 in order to do mapping and timing experiments.
Several of these nodes were sending the packets to one
machine. The additive effect eventually took down
the DMZ router at that site. Using the packet count
logs, it was possible to identify the experimenter
generating the traffic and ask them to stop and then
redesign their experiment.

Lesson: It is important to trace network traffic
back to the person generating it. At this time, the
SILK module counted packets transmitted by active
slices and returned that information in the /proc
directory. Since the experiment was still running, it
was possible to identify which slice was generating the
traffic.

“Planetlab Attach”: December 18. 2003. An
ISP reported that a PlanetLab node was “attacking” a
system on their network by exceeding the inbound
packet flow limits. The “attack” happened on
December 18th and the email asking for correction was
sent to administrative contact for the second level
domain name owner (the university). On December
19th, the report of the attack was forwarded to the local
technical owner of the machine who, on December

 - 5 -

20th, forwarded the report to the PlanetLab support
list. The traffic was traced to an experiment and the
experiment operation was modified.

Lesson: Two lessons here: 1) mapping
experiments set off network monitoring alarms easily
and 2) there is a long chain of people and a long
period of time between the alarm going off and the
experimenter creating the traffic.

The number of people involved is a problem
because each has a limited understanding of the actual
problem and they all have a job of dealing with
“attacks”. Many of the people in the middle of the
chain take claims of network attacks very seriously but
their only possible response is to disconnect the
offending computer. This makes the PlanetLab node
unavailable for all its users and makes it hard to
diagnose the problem. In particular, the logs on the
computer cannot be analyzed to see who created the
reported traffic. The problem of eliminating the
“people in the middle” is talked about in the later
section “Disintermediation”.

That the report of this “attack” took two days to
progress from the attacked to the people who could
analyze the problem means that records of traffic must
be archived and kept for at least several days. Short
experiments could generate the traffic for only a few
hours and experiment could be long gone by the time
someone looks at the actual source computer to see
who is generating the traffic. This pointed to a need
for audit logs of all network traffic sent from
PlanetLab nodes and this information must be kept for
a minimum of several days.

“Gnutella1”: December 31. 2002. A
university’s network monitoring tool detected
Gnutella traffic from a PlanetLab node. As policy,
peer-to-peer file sharing is not allowed at this
particular university. The traffic was traced to an
experimenter who was using the Limewire application
to collect peer-to-peer query and topology information
and to not actually share any copyrighted material.
The experimenter was asked to not perform the
experiments at this particular institution.

Lesson: Some sites have specific policy
requirements for application traffic. These have legal
ramifications. Also, network-monitoring tools detect
the use of an application (in this case, the use of a
particular peer-to-peer file sharing application) and not
the actual illegal activity.

“Port 80 scanning”: April 15, 2003. A
university’s network administration logged their two
PlanetLab nodes doing a scan of port 80 to many
external sites. The two nodes were disconnected from
the network. Reports of alarms from three different
sites were received. The experiment was sending a
low volume of TCP SYN packets to port 80 of a large
number of non-existent systems in order to generate
ICMP time exceeded responses which enhanced their
network mapping data.

Lesson: A simple mapping experiment,
generating a small amount of data and performing a
straightforward measurement set off alarms at many
locations. In this case, and in others, a measurement
experiment has the same network traffic profile as a
worm looking for hosts to infect (probing port 80 is a
feature of CodeRed/NIMDA). It is against the
PlanetLab Acceptable User Policy to generate
“disruptive” network traffic but it’s sometimes hard to
know what type of traffic would be considered
disruptive.

“spam relay” April 17, 2003. A university’s
network administration reported a large amount of
spam traffic being passed through a PlanetLab node
hosted at the university. They disconnected the
system from the network. The traffic was traced to an
“open proxy” service being run on PlanetLab. The
service is not a completely open proxy and in this
particular case, the proxy was accepting spam relay
connections to create a “honey pot”. Unfortunately,
the spammers thought they had found a high
bandwidth relay and the number of spam relay
requests grew from 3000 connections to over 250,000
connections. The honey pot for port 25 was closed.

Lesson: It’s a jungle out there. Simple services
(like a proxy server) or simple experiments (like a
honey pot) can have large, unintended outcomes.
Institutions have network monitoring tools to detect
“bad guys” and it’s easy to get caught in the dragnet.

 “120 probes”: April 22, 2003. A non-
PlanetLab site complained about a network monitoring
alarm showing 120 TCP probes to their network from
a PlanetLab node. The alarm happened on April 21st
and the complaint was emailed to the second level
network administrator (the university) who forwarded
it to the local technical contact who forwarded it to the
support mailing list. The traffic was traced to another
mapping experiment.

Lesson: Only a handful of packets can set off
alarms.

“Unauthorized use of account”: April 23,
2003. A complaint email was received on the
PlanetLab support list complaining that an
unauthorized request to change an Ebay seller’s email
address was made from a PlanetLab node. The person
had received from Ebay an authorization for a change
of their email address and the email gave a PlanetLab
node (by IP address) as the source of the change
request.

Lesson: Again, it’s a jungle out there. This was
another incident around the semi-open proxy service
CoDeeN [CODEEN]. Analysis of the logs showed
that the original request came from a dialup line in
Romania and the there was no searching around –
there were few requests and they were very
specifically targeted. The logs also revealed a
complicated use of some HTTP-to-TCP gateways that
had even crashed the proxy service a few times.
Additional safeguards were added to the proxy service

 - 6 -

to resolve the problem [CODEEN-SEC]. But,
services are hard to deploy on the wild, rough-and-
tumble Internet because it seems that almost anything
can be subverted and used for malicious/illegal
purposes.

“spambots at Princeton”: May 2, 2003. A
university’s network administration sent email to the
local technical contact about an alarm for spam traffic
being forwarded through a PlanetLab node that the
university. Checking the logs of the semi-open proxy
service, it seemed that the proxy was receiving the
request that contained spam in its body, but it was not
forwarding it.

Lesson: Any traffic in or out of any system is
suspect. This is one of several incidents where
PlanetLab nodes were fingered for generating
questionable content when actually the nodes were the
receivers of the content.

“Downey Savings”: May 8, 2003. The security
administrator for a bank emailed complaints to several
universities complaining about multiple probes of their
network from multiple universities. In total, three
external sites reported the reported “UDP port scans”
and they sent “abuse report” emails to 6 universities.
Many PlanetLab nodes were disconnected from the
network.

It took several days to track the experiment
generating this traffic. At the time, the SILK module
counted packets sent and received by each slice and
the PlanetLab administrative slice collected this packet
count information once every five minutes. This
meant that high volumes of traffic could be easily
traced to a slice but an experiment generating a very
small volume would hide in the noise of the packet
count numbers. When finally found and analyzed,
each sliver of the experiment was sending
approximately 10 packets every 20 minutes to random
high port numbers on a subset of 2000 computers
external to PlanetLab. The experimenter had
purposely designed the program to be low volume and
low frequency so as not to create any problem.

As a long-term effect of this incident, some
nodes have not been returned to service for several
months because of policy concerns at hosting
institutions.

Lesson: This incident held several lessons:

1. ISPs take complaints very seriously and
especially if the complaining entity is a
business. Better tools for local administrators
to control and identify PlanetLab node traffic
would help handling the complaints;

2. Experiments that are designed to be “low
profile” and well-behaved can set off alarms.
This is magnified by the ability to run an
experiment from many locations on the
Internet and thus look like a DoS attack;

3. Keeping cumulative packet counts was not
sufficient to find and track network traffic at
PlanetLab nodes. There is a need for a better
tool for mapping network accesses into and out
of PlanetLab nodes to specific slice activity
and thus to a specific experimenter.

Applications and Services
PlanetLab experimenters are writing distributed

programs – distributed control and distributed
execution. These are hard programs to write and get
correct. Misbehaving applications can use up
processor cycles, use up operating system resources,
and send inappropriate network traffic.

“Nodes hanging”: March 21, 2003. This
incident is a collection of node “hangs”. The nodes
could not be logged into but they were still pingable.
The problem was eventually traced to an application
that was using up all of the system’s file descriptors.
This was a bug that the experimenter quickly fixed
when the problem was pointed out to them.

Lesson: individual slices should have node
resource limits. Additionally, some resources should
always be available for administration. In this case,
one slice used up all the file descriptors and thus made
the system inaccessible for both users and
administration.

“disk space”: March 24, 2003. Node ran out of
disk space. One application had a log file that grew to
several gigabytes.

Lesson: The list of resources that must be
controlled and allocated to slices keeps growing. Disk
space is certainly added to the list that includes
network bandwidth and file descriptors.

“cmu5 sockets”: May 29, 2003. Some users
complained about poor performance on some nodes.
This was traced to an application that had thousands of
open sockets – a bug that was easily fixed when it was
pointed out to the experimenter.

Lesson: it’s easy for a distributed application to
seem to be working when it actually is making some
mistake (overusing bandwidth, disk, sockets,
processor). Users could use some feedback on the
amount of resources they are using and how their
application is impacting the whole of PlanetLab.

3 Tool Development
Figure 3 shows the development of PlanetLab

management and monitoring tools over the period
from November 2002 through June 2003. Based on
the lessons learned from incidents, tools were
developed to alleviate the work of dealing with each
type of incident.

 - 7 -

Nov Dec Jan Feb Mar Apr May Jun
20032002

IC
MP @

 IS
I

BW
 sp

ike
s

Port
 0I

GT C
om

pri
Free

Pas
try

E10
00

Plab
 A

tta
ch

Gnu
tel

la
PL t

rou
ble

Ping TC
P C

on
n

Exc
es

s B
W

IC
MP T

raf
fic

File
 de

sc
r

sp
am

ming
Port

 80
Una

uth
 us

e
DOS at

tac
k

sp
am

bo
ts

Dow
ne

y S
av

ing
s

TCP P
rob

e
TCP P

rob
e

UIU
C of

lin
e

Disk
 sp

ac
e

Per slice app control

Rules/doc on building apps

External access cntl

Per slice resource cntl

Common mapping app

Disintermediation

Flow logs

RPM updates

Kernel testing

BW logs

BW limiting

AUP

Node reset cntl

s

Down Nodes B
PlanetLab has

remotely restore nodes

• Ping-of-Death

• Power Control

• Administrator

“Ping-of-death”
adds to the networkin
type of ICMP pack
receives a POD packe
properly signed) the n
can reboot a node that
ssh (the normal way o

 POD doesn’t w
panic or are unav
connectivity problem
resource overuse prob
operational; however,
instance, normal acces

About half of th
control units (“PCU”
devices accessible ov
cycle the node. Th

Figure 3: Development of PlanetLab management tool
ack In Service
developed several methods to
:

 Units

email

 (“POD”), is a kernel patch that
g stack sensitivity to a particular
et. When a PlanetLab node
t (and the packet is, of course,

ode instantly reboots. POD thus
 is otherwise not accessible with
f accessing a node).

ork for systems with a kernel
ailable because of network

s. POD most often works on
lems where the computer is still
because of resource overuse, for
s through ssh is not possible.

e PlanetLab nodes have power
) attached to them. These are
er the Internet that can power

method of restoring a node’s operation. About 30% of
the PlanetLab sites have PCUs installed.

The most common reason for PC

is was considered an ultimate

U failure is
mis-c

ng Linux
syste

local system
admi

Tracing Traffic
PlanetLab’s geographic distribution makes it

ideal for mapping the Internet. It seems that most

onfiguration. The local site administrators often
had problems correctly installing and configuring the
PCUs. The problems ranged from the wrong nodes
being plugged into the wrong outlets to desktop
systems remaining off when power was restored. The
complete installation of the units was not tested
(power cycled) which would have exposed many of
these configuration problems. That step was
eventually added to the installation process.

Additionally, power cycling a runni
m often leaves the filesystem in a questionable

state. If the filesystem is in a bad state before the
power cycle (e.g., full), the power cycle won’t clear
the bad state. Also, if a power cycle caused the bad
state in the filesystem, the rebooting process often
would not be able to correct the problem.

If all else fails, email is sent to the
nistrators requesting the nodes be rebooted. This

always successful but does sometimes take several
days to get a node back online.

- 8 -

researchers first build a “H
pings other PlanetLab and

ello world” application that
 non-PlanetLab nodes to

disco

nations
IP ad

ys after the
actua

statistics and anomalies. Because
Plane

raffic (in and out), saving that information
and e

ilesystem. A data collection application
name

ion named
“netf

sible.

 previously, a reported

the experimenter who
 are usually from the

remo

• o’s only job is

• rimenters are buffered from the

• totally on PlanetLab

W an alarm at some
site, th
ma pe
people rse DNS lookup or whois to come up
with

appli

 through the hosting institution
allow

ver timing and connectivity information.
Repeated pings, IP address space scanning and port
scanning are just the activities that set off Snort,
BigBrother and other network monitoring tool alarms.
Even some “well designed” probing applications have
set off alarms implying that some sites have very tight
restrictions on probing and mapping activities.

To handle an inappropriate traffic incident, the
problem is mapping the reported activity from the
network traffic to the experimenter. A traffic report
usually contains a time and a source and desti

dress. Ideally, a tool that maps this information
to a specific experimenter would be ideal.

The mapping is further complicated by the need
to map network traffic that happened in the past –
PlanetLab Support may not receive the report of
inappropriate traffic report until several da

l event.

Most conventional traffic monitoring tools are
for administration of data centers or ISP subnets.
These often “snoop” on the network traffic on a subnet
and report

tLab nodes are distributed around the world on
different subnets, tools for snooping on this distributed
traffic are not readily available and would be difficult
to deploy because of the different administrative
domains

These problems (mapping, delay and
distribution) motivated the development of tools that
have each node collecting information on its own
network t

ventually reporting that information to a central
repository.

At first, the SILK module counted network
packets that were sent and received by individual
slivers on a node and made these counts available in
the /proc f

d “scout-monitor” ran in an administrative slice.
Scout-monitor collected the packet counts into log
files every 5 minutes. Every few hours, these data files
are collected by PlanetLab Support, analyzed, and
made available on the web. The PlanetLab web site
contains daily updated tables showing the top 10
consumers of network bandwidth by slice and the top
10 consumers of network bandwidth nodes.

This packet count information was often
sufficient to trace reports of traffic to slice usage but
this was a very manual operation and tended to fail if
the reported traffic was just a few packets.

To solve both the problem, the SILK module
was enhanced to return information on which IP
addresses the slivers were sending and receiving
traffic from. An administrative applicat

low” analyses this information every 5 minutes
and calculates the “flows” – the connections from a
source to a destination by some slice. This

information is saved to a file. These files are kept on
the node and are eventually copied to PlanetLab
Support where they are available for analysis if
problem reports arrive.

This flow information makes it very easy to
trace from a network traffic report (IP address at some
time) to the slice that created that traffic and thence to
the experimenter respon

Disintermediation
As has been mentioned

network problem follows a long path from the
originally offended party to
created the traffic. The steps

te administrator to the institution network
administrator (through ‘abuse’ mailing lists) to the
local PlanetLab system administrator to PlanetLab
Support. PlanetLab Support analyzes the report and
identifies the slice generating the traffic. Email is then
sent to the experimenter and the problem is resolved.

This process has many problems:

• It can take one or more days to resolve a
problem;

Several people are contacted wh
passing the data through;

The expe
effects of their experiments;

The job of analysis falls
Support

hen network traffic sets off
ey have a source IP address that must be

p d back to the source’s administration. Most
 do a reve
a domain name that will accept an email.

Currently, PlanetLab nodes get their DNS support
from their hosting institution. This means that
complaints about questionable network traffic go to
the network administration of the hosting institution.

 That is, the person receiving the email about the
network traffic problem is not the person generating
the traffic. This points out that there is no standard
way of mapping a source IP/port address to an

cation.

PlanetLab has explored several ways to try and
remove the people in the middle and allow the person
generating the report to go directly to the
experimenter.

Some of the PlanetLab nodes have had their
reverse DNS lookups modified to point back to
PlanetLab Support. This eliminates the
communication

ing the report to go directly to someone who can
find the source application. This is not widely
deployed because most sites have DNS controlled at

 - 9 -

the institution level and adding special lookups for
individual systems is not easy.

The most successful tool has been making
‘netflow’ information available. Each PlanetLab node
has a web server that displays source and destination
IP ad

o generated
that t

tance, the
email

ork traffic problems –
they

ting distributed
nd distributed

corre

tools

time,

developed additionally
enabl

ications. There
are at

rs (PI’s)

ators

Normally
so t be stopped.
The

amok

ible for and should have to ability
to shu

that a

anisms. The local site
admi

individual slices.
Plane

ports show up many
f distributed system

mana

re – how best to diagnose and repair;

dress to slice mapping. Additionally, there is an
email link on the page that will send email to the
PlanetLab accounts assigned to that slice.

Thus, in the best case scenario, someone notices
a network traffic problem, they browse the web page
on the source PlanetLab node, identify wh

raffic and sends email directly to that person.
This eliminates all of the intermediate people and
leads to a speedy resolution to the problem.

The people in the middle need to know if there
are problems occurring in their networks, so some
accommodation is made for this. For ins

 address for sending email to the slice owner is
actually an alias at PlanetLab Support that also sends
email to the node’s local technical contact and the
PlanetLab support email lists.

This process of disintermediation must also
include the education of users, site administrators and
anyone who might notice netw

must know to use this PlanetLab specific
mapping mechanism and has lead to the formation of
an “IT Advisory Board” made up of local site
administrators to assess the best methods for resolving
these problems.

Controlling Resources
PlanetLab experimenters are wri

programs – distributed control a
execution. These are hard programs to write and get

ct. Misbehaving applications can use up
processor cycles, use up operating system resources,
and send inappropriate network traffic. When
applications misbehave, they must be managed.

We took two approaches to this: proactive and
reactive. Proactive means limiting the things an
application can do wrong. Reactive means having the

to stop or limit applications that go bad.

Proactive tools under development include per
slice network bandwidth and system resource limits.

 Node bandwidth limits are in place but these
are not tunable for individual users. The default Linux
system does not control system resources (like CPU

 file descriptors, memory) to the expanded virtual
server system we are using.

Work is in progress to build a mechanism for
low-level resource limiting and allocation on a sliver
basis. The system being

es in resource allocation algorithms (economic
models, barter systems, etc) [SLICE].

The reactive tools allow a privileged
administrator to shut off offending appl

 least four classes of administrators:

• The developers themselves

• Local site administrators

• Responsible principal investigato

• PlanetLab Support administr

 an application stays in control, but
me imes they “run away” and need to

developers themselves need a tool to “pull the
plug” on a program that has gotten away from them.
This is difficult because some types of failures
(extreme network traffic, for instance) make it nearly
impossible to log into the node to stop the application.

The local site administrators have the ultimate
ability to pull the plug on computers that have “run

” but they also need some tools to discover the
source of the problem, discover a contact to notify
about the problem and, in extreme cases, to stop the
offending program.

PI’s also need some control over the activities
that they are respons

tdown the activity of a slice that is misbehaving.

PlanetLab Support, who has the responsibility to
keep PlanetLab running, must be able to stop slices

re effecting the operation of PlanetLab and, for
extreme problems, have a “big red button” that
terminates the operation of offending slices, nodes and
possibly the whole system.

These requirements have been approached with
a several levels of mech

nistrator has a PlanetLab account for a
“management slice” on their PlanetLab nodes. The
administrative slice lets them look at log files, running
processes and stop and reboot the node. Their account
also gives access to web pages at PlanetLab Support
that use all of the remote node restart features (POD,
PCU) to stop a node. This feature is also used by
PlanetLab Support to stop a node.

Remotely logging into the nodes and killing
their running processes stops

tLab Support administration has tools that can
thus stop a slice that is creating problems by killing
the processes on all nodes. A subset of this
functionality will eventually be available to PI’s.

4 Conclusion
These “incident” re

interesting dimensions o
gement:

• Maintenance of remote and distributed
hardwa

• Software system has bugs and failures – how
best to proactively and reactively handle these;

 - 10 -

• Network monitoring – how to monitor network
traffic on a non-centralized system;

• Disintermediation – how to create a path from
a network traffic report to the responsible

•
tern of acceptable traffic is

•
This ranges from setting off

P
observations by the development of tools for
managing itself

e Policy
p/aup/

person and application without involving a
large set of intermediate people.

They have also shown some observations
about the Internet:

Network monitoring is wide spread on the
Internet and the pat
fairly narrow;

There are unknown implications to
experiments.
alarms to being a target for questionable
activity;

lanetLab has addressed these dimensions and

 with the general goal of creating a
testbed for further experimentation and refinement of
distributed systems management.

5 References

[AUP] PlanetLab Acceptable Us
http://www.planet-lab.org/ph .

rsity. [CODEEN] Research project at Princeton Unive
http://codeen.cs.princeton.edu/ .

[CODEEN-SEC] Vivik S Pai, Limin Wang,
KyoungSoo Park, Ruoming Pang, and Larry Peterson.

he Dark Side of the Web: An Open Proxy’s ViewT .
3. Submission to ADM HotNets-II, October 200

[PLANETLAB] Larry Peterson, Ton Anderson,
David Culler and Timothy Roscoe. A Blueprint for
Introducing Disruptive Technology into the Internet.

. In Proceedings of ADM HotNets-I, October, 2002
http://www.planet-lab.org/pdn/pdn-02-001.pdf .

[SILK] Andy Bavier, Plkmod: SILK on PlanetLab.
http://www.cs.princeton.edu/~acb/plkmod/ .

[SLICE] Brent Chun, Tammo Spalink. Slice Creation
and Management. PlanetLab PDN-03-013:
http://www.planet-lab.org/pdn/pdn-03-013.pdf .

ect:

[VSERVER] Open source development proj
http://www.linux-verver.org/ .

 - 11 -

http://www.planet-lab.org/php/aup/
http://www.planet-lab.org/pdn/pdn-02-001.pdf
http://www.planet-lab.org/pdn/pdn-03-013.pdf

Appendix A: Major Incidents from November 2002 until June 2003
AL – network monitoring alarm that mis-identified an experiment at abuse
AUP – application went against acceptable use policy
BUG – application built wrong
INF – problem with infrastructure hardware/software
BW – bandwidth problems
HW – hardware
RES – resources

AL 14

Nov
2002

PL node sending ICMP packets to router every two
seconds for two weeks
CMU doing measurement. Network mapping
One machine disconnected.

Talk of putting machines
behind firewall. Realization of
need for AUP.
Added tiny web server and
finger to each node.

BW 26
Nov
2002

“Bandwidth spikes”.
Video overlay network. Problems with coding and
order effects.
DMZ at Berkeley taken down.

Need for bandwidth limiting
identified

AL 27
Nov
2002

“Port 0”
Traffic to port 0 set off 5 university and 2 ISP snort,
etc alarms.
Nodes taken offline.

Feature requests for remote
console, remote power control,
failures database

AL 27
Nov
2002

“packet spikes from millennium”
Spikes of traffic from PL nodes to external hosts and
to addresses that don’t exist

AL 2 Dec
2002

“GT Compromised”
Admins noticed smurf packets from PL nodes

Deduced that this was old
reports on 27 Nov incident

BW 6 Dec
2002

“Seattle meltdown”
PL nodes using all bandwidth. Disconnected
Experimenter measuring max throughput

Need bandwidth limits

BW 11 Dec
2002

“FreePastry incident”
5 Pastry rings causing gobs of traffic during OSDI

INF 19 Dec
2002

“One node from each site”
E1000 driver
Over the next few weeks, lost nearly 30% of PL
nodes.

Thought it was related to Scout
driver since didn’t have
console output. This happened
over several weeks repeatedly
loosing many nodes at one
time. Updated e1000 driver at
all nodes the end of Jan.

AL 20 Dec
2002

“Planetlab Attach”
ScriptRoute mapping experiment set off ISPs alarms.
Continuous probing of high port numbers.
Several nodes taken offline

Had to explain to sysadmins
that PL was experimentation
and that actions were not DOS
attacks.

AL 24 Dec
2002

“Attack major web sites”
Time mapping experiment by Princeton on uky PL
node. Pinging port 80. Experiment/attack ran for 5
minutes.

Detected high flows to
multiple sites.
Found: machine and when
mapped to traffic pulses by
slices. Scout-monitor.

INF 30 Dec
2002

“Cron hangage”
All nodes hung in cron.daily.

Update was taking many hours
since all nodes were being
updated.

 - 12 -

AL 31 Dec
2002

“Gnutella1”
Net monitors noticed Gnutella traffic (“Limewire”)
which they do not allow

Researcher as running the
index/search part of
“Limewire” to watch Gnutella
query traffic. Attempts to tell
admins how to use sudo
commands to check logs.
Found: noting who was logged
in at the time and searching
filesystem for code being run.

BUG 6 Jan
2003

“eating cycles”
Complaint that some experiment is using up lots of
cycles on several nodes

Talked to researcher to mod
application

BW 12 Jan
2003

“Canterbury bandwidth”
6GB of data in two weeks – expensive
Nodes shut down

Experiment of distributed
storage of large data files.
LoKI storage system. Looking
at bandwidth in general.
Added compression to
infrastructure (Ganglia).

AL 15 Jan
2003

“Planetlab trouble”
Sustained bombardment of single machine

Also illuminated Cambridge
bandwidth expense problems

HW 27 Jan
2003

“UCLA memory”
Memory errors. Node replaced. Process took about a
month.

AL 28 Jan
2003

“Ping attack”
Persistent, high-volume pings took out border routers
at Berkeley site

Experiment failure – one sliver
reporting to log node, log node
fails, reporting sliver persistent
causing ICMP ‘port not found’
messages.

INF 29 Jan
2003

“nodes rebooted”
PL core user noted “many” node rebooted
PL developer rebooted several machines while driver
developing

HW 10 Feb
2003

“interface up/down”
Network interface on one node repeatedly going up
and down.
Resolved by moving node network connection

INF 12 Feb
2003

“fragmented packets”
Experimenter noted that one node drops all packets >
1500 bytes.

Starting to get questions about
what’s “around” PL nodes –
throughput of routers, …

INF 27 Feb
2003

“Berkeley offline”
Machines crashed with “shim_socket failure”.
Rebooted.

INF 27 Feb
2003

“TCP connection problem”
Experimenters started complaining about
programmatic failure using sockets. 4 different
researchers.

New version of scout module
that wasn’t totally complete.
Started discussion regression
testing.

INF 4 Mar
2003

“name problem”
Experimenter noticed /etc/hosts on machine
configured wrong

Hand corrected problem.
Some node configurations very
slightly due to manual fixes.

BW 4 Mar
2003

“utexas excessive bandwidth”
Net admin noted node generating > 3.5Mbps
continuously
normal usage taken as abuse – reassured net admins

INF 6 Mar “weird socket interaction”

 - 13 -

2003 raw socket implementation bugs
HW 10

Mar
2003

“Stanford memory”
Node filed repeatedly because of memory parity
errors

INF 13
Mar
2003

“Stanford memory”
Machine crashed multiple times with memory errors.
Service required

INF 13
Mar
2003

“Basil node installation”
Problems with installing nodes on new HW
configuration.
After 3 months, still not resolved

INF 19
Mar
2003

“filtering ports”
Experimenter noted that ports are filtered
inconsistently for each of the PL nodes. Nothing
done.

AL 20
Mar
2003

“ICMP traffic”
Net admin at two sites note large volume of ICMP
traffic from/to PL nodes

BUG 21
Mar
2003

“uiuc3”
Hanging of many (10) PL nodes. Caused by coding
bug that used up all file descriptors.
Manual deletion of run-away processes and machine
rebooting.

Need for per-slice resource
allocation

BUG 24
Mar
2003

“disk space”
One slice is using all available disk space on some
nodes

INF 24
Mar
2003

“NTPD incompatible with scout”
NTPD’s use of sockets doesn’t work with latest scout
module.
Module debugged and updated

BUG 7 Apr
2003

“sydney1”
Experiment used all resources. Required manual
resetting of 13 nodes. Program newly failing because
of change in raw socket operation.

INF 9 Apr
2003

“write on socket failure”
Experimenter found problem with sockets.
Bug in raw socket code.

AL 15 Apr
2003

“port 80 scanning”
Complaints from 3 net admins on scanning of nodes
outside PL.
Some nodes down for over a week.

Traffic hard to find in logged
BW data (too small). Need
flow information

AL 17 Apr
2003

“spam relay”
Report that PL nodes being used as spam relays
CoDeeN nodes were accepting CONNECT requests
to create honey pot. Spammers thought they had an
open relay so traffic increased fantastically.

BW 17 Apr
2003

“rate limit”
PL nodes at one site rate limited to smooth out site
traffic. The PL nodes were using too much BW.

AL 18 Apr
2003

“potentially infected”
Monitoring sw detected possible Nimda attack
(scanning IPs for port 80) from PL nodes.
Mapping experiment that should have just used
traceroute.

AL 19 Apr “possible Nimbda” Because it can take day for a

 - 14 -

2003
21 Apr
2003

Monitoring sw detected possible Nimda from PL
nodes
More reports of port 80 scanning.

report to bubble through all the
people, there are many waves
of the same problem.

AL 22 Apr
2003

“port 80 outside PL”
Network sw detecting PL nodes accessing many
computers.
More traffic through CoDeeN

AL 22 Apr
2003

“120 probes”
Person on dialup line complaining that PL nodes are
probing his system

Hard to identify traffic because
of low volume.
Some admins upset because
there was no “prior consent”
from packet receiver. Talk of
limiting outside PL access

AL 23 Apr
2003

“Unauthorized use of account”
Use of CoDeeN proxy in scheme to steal accounts.
PL node was identified because account’s site report
IP addr of computer request coming from.

CoDeeN

AL 24 Apr
2003

“DOS attack”
Multiple PL nodes doing a GET on a node outside PL.
“76 attacking machines making between 31 and 222
webpage requests”
“Http_load” experiment.

AL 25 Apr
2003

“Accessing porn”
Network software noticed PL node accessing a
questionable site.
CoDeeN was acting as a proxy.

CoDeeN

AL 25 Apr
2003

“Open proxy”
Report from “JSTOR” licensed journal archive that
HTTP requests were coming from PL nodes. Hackers
accessing JSTOR through CoDeeN proxy.

Questions about external
access to CoDeeN

AL 29 Apr
2003

“high traffic”
PL Support noticed large amount of UDP traffic and
apps using hundreds of sockets.
Experimenter found bugs in their application.

AL 30 Apr
2003

“spam on IRC”
Network sw noted PL node sending spam to IRC
ports
Close relationship with experimenter lead to quick
resolution.

CoDeeN. Application gets
security features added and is
brought back online on 2003-
05-21.

AL 1 May
2003

“2 DOS”
Umich non-PL hosts hit with “DOS attacks” from
multiple PL nodes. Umich unplugged.

Cmu5 experiment run amok

AL 2 May
2003

“spambots at Princeton”
Network sw noted spam messages. Was spam sent to
odd ICQ ports.
Reconfigured CoDeeN to not allow tunneling

Discussions about how to get
from attackee to experimenter.

AL 8 May
2003

“Downey Savings”
Network sw detected “attack signatures” – port scans
on nodes outside PL. Reported from several sites.
Three sites taken offline. One site offline after one
month.

Experimenter had thought he
had made a well-designed and
friendly measurement
application. Any port scanning
was done like traceroute.
More than thousand nodes
were measured, only three
complained.
Discussion about control of

 - 15 -

access outside PL.
AL 15

May
2003

“TCP Port Probe”
Probing host outside PL.

Killed experiment to eliminate
offending traffic.

AL 27
May
2003

“TCP Port Probe redux”
Probing hosts outside PL.

First use of putting iptables
filters on nodes – faster
response to problem

BUG 29
May
2003

“cmu5 sockets”
Complaints about performance on some nodes.
Found and app using thousands of open sockets.

Bug in code

AL 2 Jun
2003

“UIUC offline”
Campus exit complaining about too much ICMP
traffic from PL node.
Turned out to not be a PL node

BW 2 Jun
2003

“Lots of traffic at MIT”
Sysadmin noting 4000 packets/sec from PL nodes.
Moved nodes to router with better reporting.
Pointed to ‘netflow’ info.

BW 2 Jun
2003

“ucb5 traffic”
Report of large amounts of network traffic.

Experiment moved > 1TB of
data

AL 3 Jun
2003

“irregular traffic”
Responded with description of PL experiments

HW 3 Jun
2003

“IT TRANSIT”. Routers at Ashburn stopped working

NET 4 Jun
2003

“Routing to Sidney” Nodes seemed to be blocking ssh
traffic.

AL 6 Jun
2003

“Security concern”. One node doing scanning of high
ports on many IP addresses

ACCT 6 Jun
2003

“creating new account”. PI asking about creating
accounts for students

AL 6 Jun
2003

ICMP 'echo request' with data, non-standard TTL of
61, UDP with frag and don't frag bits set. Packet rate
5-10 pkts/sec.

NET 6 Jun
2003

“HP and PlanetLab”. Configuring routers and systems
at installation and for Internet2

RES 8 Jun
2003

“millennium out of space”. Node ran out of disk
space.

One slice had a 9.7BG log file

APP 1 Jun
2003

“problems with PlanetLab” – researcher noticed
getting garbage information back when talking to
many nodes

Application was not checking
for fragmented packets.

HW 10 Jun
2003

“Princeton oops”: two nodes wouldn’t reboot because
of errors from the RAID controller

INF 22
May
2003

“Seattle bootCD”. Disk became corrupted, system
needed reinstall. Tested installation with new
bootCD.

Several weeks getting the
bootCD working because of a
SCSI disk controlled not
supported by the bootCD

AUP 10 Jun
2003

“Berkeley portscan”. University security reported a
portscan from a PL node

Slice sent 30 packets to
reported IP address and other
random IP addresses. Ruled
against AUP

AL 10 Jun
2003

“Copyright Infringement”. Report that a PlanetLab
node was running a cracked version of commercial
software.

Researcher examined CoDeeN
logs to discover true source of
application usage.

AL 10 Jun
2003

“Jump in UDP traffic” Pointed administrator at traffic
info page on nodes

 - 16 -

?? 11 Jun
2003

“Rootkits” – request from site administrator to have
special rootkit RPMs installed on the PL nodes

Special dispensation was given

 - 17 -

	015_incidents20031104.pdf
	PlanetLab Operation
	Incidents
	Broken Hardware
	Broken Software
	Network
	Excessive Bandwidth
	Inappropriate Traffic

	Applications and Services

	Tool Development
	Down Nodes Back In Service
	Tracing Traffic
	Disintermediation
	Controlling Resources

	Conclusion
	References
	Appendix A: Major Incidents from November 2002 until June 20

